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Abstract

In this paper, we study the problem of attributing credit for customer acquisition
to different components of a digital marketing campaign using an analytical model.
We investigate attribution contracts through which an advertiser tries to incentivize
two publishers that affect customer acquisition. We situate such contracts in a two-
stage marketing funnel, where the publishers should coordinate their efforts to drive
conversions.

First, we analyze the popular class of multi-touch contracts where the principal
splits the attribution among publishers using fixed weights depending on their position.
Our first result shows the following counterintuitive property of optimal multi-touch
contracts: higher credit is given to the portion of the funnel where the existing baseline
conversion rate is higher. Next, we show that social welfare maximizing contracts
can sometimes have even higher conversion rate than optimal multi-touch contracts,
highlighting a prisoners’ dilemma effect in the equilibrium for the multi-touch contract.
While multi-touch attribution is not globally optimal, there are linear contracts that
“coordinate the funnel” to achieve optimal revenue. However, such optimal-revenue
contracts require knowledge of the baseline conversion rates by the principal. When
this information is not available, we propose a new class of ‘reinforcement’ contracts and
show that for a large range of model parameters these contracts yield better revenue
than multi-touch.
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funnel
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1 Introduction
The last decade has seen a large shift of advertising effort from offline to online channels.
Internet advertising revenue is projected to overtake TV advertising for the first time in
2017.1 The key benefit of the online medium is the accountability provided by the user clicks
and the cookie trails left by their visits to various advertising venues. This fine-grained view
of the user’s journey through the decision funnel along with the specific advertising actions
they are exposed to (banner and display ads, video ads, text ads after search, emails) provides
a unique opportunity to solve the traditional marketing mix problem in a very user-specific
way. The key to arriving at optimal resource allocations across the channels is to determine
the response model of how each of the interventions affects the decision-making journey
of the customer. This is commonly phrased as an attribution problem of how the credit
for a digital conversion should be split among the various advertising actions. Attribution
allows an advertiser to determine the impact of each ad-type so that the effectiveness of
different types of ad activities can be taken into consideration while deciding how to split
the advertising budget.

The problem of attribution is not new. It arises in traditional advertising channels like
television and print as well, where advertisers have resorted to marketing mix models using
aggregate data (Naik et al., 2005; Ansari et al., 1995; Ramaswamy et al., 1993). However,
online advertising offer a unique opportunity to address the attribution problem as advertis-
ers have disaggregate individual-level data which were not previously available (Goel, 2014).
Disaggregate data offer the possibility of determining the effectiveness of an ad on an indi-
vidual customer at a specific time. Although better data has improved the accountability
and performance in online advertising, several advertisers still use simplistic approaches like
last/first touch attribution that might be suboptimal under a variety of conditions (PWC,
2014; Abhishek et al., 2016). The rapidly growing size of the industry and concerns raised by
the advertisers have lead to tremendous recent focus on attribution. Companies like Google,
Marketo, and Datalogix have designed and offered several new algorithmic attribution tech-
niques in the last few years. Google (2017a) alone offers a variety of such models including
last-touch and first-touch (where the last and first publisher gets the full credit respectively),
as well as other weighted models including options for weighting based on fixed weights, time
decay or position. Google (2017b) also offers an alternate data-driven attribution method
that is based on the Shapley value of each publisher.

At the same time, many researchers have proposed empirical models of attribution. At
its core, the attribution rule determines the payment received by publishers for showing
an advertiser’s ad.2 Most of the existing literature has assumed that the publishers are not
strategic (with the exception of Berman (2015)) and that their actions are not affected by the
attribution methodology used. However, publishers (e.g. Facebook or Google) have to exert a
considerable amount of effort (such as investments in technology) to match an ad impression
with the right customer, and this effort level is affected by the incentives. Unfortunately, a

1http://www.pwc.com/us/outlook (accessed March 2017).
2In this paper, we denote publisher as an entity that is responsible for matching ads to consumers and

the delivery of ads. In most cases, this role would be fulfilled by an ad network such ad Double Click of
Yahoo Display Network, a search engine like Google or a large publishers like Facebook or Snap. We use the
term publisher to be consistent with the prior literature (e.g. Berman (2015))
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typical advertiser cannot observe the effort exerted by a single publisher in the funnel while
the final conversion is based on the total effort by all publishers in it. This might lead to
free-riding where a publisher aims to benefit from the effort exerted by another publisher in
the pipeline, and creates an opportunity for moral hazard (Holmstrom, 1982). In addition,
the publishers are much better informed about the consumers as they observe them in many
different contexts as compared to the advertiser. This information asymmetry prevents the
advertiser from estimating the effectiveness of a publisher’s marketing action and can lead
to adverse selection. As an example of such an inefficiency, Abhishek et al. (2016) show that
once display publishers have determined which consumers are most likely to convert, they
flood them with ads. This crowds out more effective publishers and drives revenues from
them to less effective publishers. Both the moral hazard and adverse selection problems
create a misalignment of incentives between the advertiser and the publishers resulting in a
loss of efficiency in online advertising.

The misalignment in incentives is manifested in many ways. Ad fraud has become a
major concern and publishers charge advertisers for ads that consumers never see. In fact,
methodologies like last-touch give credit to publishers even if the consumer would have
converted without seeing an ad. There is a substantial increase in low-quality ad inventory,
that do not lead to any meaningful outcomes such as conversions (Scott, 2016). A recent
Economist (2016) article shows that ad fraud will cost advertisers US$ 7 billion this year and
is growing rapidly. Even though advertisers are aware of these issues, they are not able to
address them due to the lack of appropriate data and the complexity of the online advertising
industry. This complication is exacerbated even further due to the multiple touch-points
spanning several publishers that jointly affect the consumer decision-making funnel. The
multiplicity of publishers create a lack of accountability (Economist, 2016), which affects the
advertisers and ultimately the entire advertising industry adversely. Although advancement
in attribution methodologies have made advertising more efficient,3 they have not eliminated
the moral hazard or adverse selection issue completely. One way to eliminate or reduce the
moral hazard issue is using newer attribution methodologies, e.g. Berman (2015) presents
a Shapley value based attribution scheme that performs better than last-touch attribution
when the publishers’ ads are strategic complements and the uncertainty in consumer behavior
is low.

In this paper, we propose a simplified two-stage model of the purchase funnel to determine
the most appropriate attribution methodology. Prior literature (Mulpuru, 2011; Court et al.,
2009; Bettman et al., 1998) shows that consumers move through different stages before they
purchase a product. Consequently, in our analysis, the two stages considered are awareness
and consideration. Incorporating the temporal dynamics is not only a more natural approach
to addressing the attribution problem but also leads to interesting new results as opposed to
more static models considered in prior literature. We consider two distinct publishers that
are responsible for generating ad impressions on behalf of the advertiser and jointly drive
consumers towards conversion. In the basic model, we consider that one publisher can create
awareness and the other one can drive conversions.4

3For example, “According to Forrester Research, B2B companies are seeing an average of 15 to 18 percent
lift in revenue as a result of implementing a closed-loop attribution system.” (https://www.clickz.com/
lift-off-a-new-study-on-attribution-and-revenue/41687/, accessed March 2017).

4In an extension of the basic model, we assume that both publishers compete for both awareness and
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After reviewing related work and background in Sections 2 and 3, we define our model
in Section 4. In Section 5, we first analyze a linear attribution rule that splits a fraction of
the marketing dollar as f and 1− f between the two publishers (for a conversion). This rule
resembles the commonly used multi-touch attribution rules, such as first- and last-touch. We
term the resulting contracts as f -contracts, which in turn determine the efforts exerted by the
publishers in the co-production process. One might expect the optimal f to give more credit
to the stage where the baseline conversion rate is lower. We show the counter-intuitive result
that, all else being equal, an advertiser using an optimal f -contract should give more credit
to a publisher with higher baseline probability of advancing (down the purchase funnel) in
its stage. We arrive at this counter-intuitive result because of the way multi-touch contracts
compensate publishers. There is a complementarity between the baseline rate of one stage
and the effort exerted by the publisher in the other stage since the final conversion is a co-
production process. In the presence of this effect, to provide an incentive for the publisher
in this stage to exert optimal effort, the optimal f -contracts gives this publisher more credit
if its baseline rate is high.

Next, we show that social welfare maximizing contracts can lead to have even higher
conversion rates than optimal multi-touch contracts, highlighting a prisoners’ dilemma effect
in the equilibrium for the multi-touch contract. Our result shows that the optimal f -contract
gives an inefficient equilibrium due to lack of coordination between the publishers. This result
is unique in the attribution literature as we show that the general class of f -contracts, which
are commonly used in practice, can result in inefficiencies in the effort exerted by the different
publishers.5

In Section 6, we explore the broader design space of linear contracts. We show that
there are optimal linear contracts that can “coordinate the marketing channels” to achieve
optimal revenue. However, these optimal contracts suffer from the same problem as optimal
multi-touch contracts in that they require full knowledge of the baseline conversion rates
by the principal (advertiser). For this reason we propose a new class of ‘reinforcement’
contracts. These contracts perform significantly better over a wide range of parameters than
other multi-touch contracts while not relying on the knowledge of the baselines. Finally, in
Section 7, we examine several extensions of our underlying models and show that the main
findings still hold under a variety of circumstances.

This paper addresses an important gap in the attribution literature, namely the strategic
decision by the publishers in a dynamic purchase funnel. As discussed earlier, incorporation
of the dynamic nature of the conversion process leads to new and interesting results. This
paper has also several managerial implications about designing of multi-channel advertising
contracts under information asymmetry and uncertainty. Advertisers can use the contracts
outlined in the paper to increase the effectiveness of multi-channel advertising.

conversions.
5Given the inefficiency, a related issue is how bad an f -contract can be in terms of social welfare. Using a

concept called the Price of Anarchy (Koutsoupias and Papadimitriou, 1999; Roughgarden and Tardos, 2002),
we show that this multiplicative ratio is bounded by 4

3 .
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2 Literature Review
Recent years have seen a tremendous amount of academic interest in the attribution problem
given the importance to the industry. Here, we discuss the different streams of literature
that are relevant to our research.

We start off with some of the empirical work on attribution from the marketing literature.
Shao and Li (2011) propose two multi-touch attribution models, a bagged logistic regression
model and a probabilistic model, and they apply these two approaches to a real-world data-
set. Jordan et al. (2011) explain why current attribution methods are inefficient and they
find an optimal ad allocation and payment scheme in a model they developed. Dalessandro
et al. (2012) propose an attribution methodology based on a casual estimation problem that
uses the concept of Shapley Value. Anderl et al. (2013) introduce a graph-based framework
for attribution using Markov models and test it in real-world data-sets. Li and Kannan
(2014) propose a measurement model for attributing conversions to different channels and
find that the relative contributions of these channels are different from those estimated by
traditional metrics like last-touch. Xu et al. (2014) develop a multivariate point process that
captures the dynamic interactions among ad clicks and find that even though display ads
may have low direct effect on conversions, they have also an indirect effect by stimulating
subsequent visits through other ad formats. Abhishek et al. (2016) use a hidden Markov
model for consumer behavior to find that different channels and types of ads affect consumers
in different stages in the purchase funnel.

One of the first analytical papers on attribution was by Berman (2016). Berman uses an
analytical model with two publishers and two advertisers that involves externalities between
the publishers and uncertainty about consumer visit order. Using his model, he shows that
bidding truthfully in ad auctions is not an equilibrium for the advertisers. He also shows
that last-touch attribution results in lower profits for advertisers compared to not using
attribution, while an attribution based on Shapley value can result in higher profits when
conversion rates are low.

Our work differs from Berman’s work in that we explicitly model the marketing funnel
and we take into account customer’s microtrails. We believe that the nature of some websites
make them more or less likely to be at a certain point in a customer’s trail. For example,
when a customer searches for a product he is already interested in, we can assume that
he is in the final stage of consideration, and therefore an ad in the search engine is more
likely to be the last-touch point before purchase. This affects the behavior of publishers
who publish ads for different stages in the funnel, and as a result it is important especially
for multi-touch contracts. Another difference is that we model a wider range of attribution
rules, where last-touch and Shapley value are special cases, and we examine the advertiser’s
problem to determine the optimal attribution. However, we assume a functional form for
the relation between the effort of the publisher and the increase in conversion rate, while
Berman models the process of price setting at each stage more realistically via a second-price
auction.

The attribution problem is also related to the team production literature in contract
theory. There is a big literature on the topic, but to mention just a few, Holmstrom (1982)
studies the problem of moral hazard in team compensation and how it can be dealt with by
breaking the budget-balancing constraint. Eswaran and Kotwal (1984) followed by explaining
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how not balancing the budget can result in a new source of moral hazard. Holmstrom and
Milgrom (1987) study compensation schemes for incentivizing agents. Dearden and Lilien
(1990) consider a problem in which the firm learns over time. McAfee and McMillan (1991)
study the interaction between moral hazard and adverse selection in a team model.

Besides the context, another key difference to our work is that we explore the multiplica-
tive effect of agents’ efforts, which is a result of the marketing funnel. In other words, instead
of all agents putting efforts together that adds to a total effort, they put efforts in stages in
a way that the result of the effort an agent puts in a stage is affected by what happened in
other stages. Incorporating this difference, which is a key to the marketing funnel approach,
leads to some interesting results.

3 Background
We present some background on the purchase funnel, attribution models, and fairness con-
siderations.

3.1 Purchase Funnel and Common Attribution Rules

Figure 1: Purchase funnel.

In the online world, consumers are exposed daily to a number of different types of ads,
e.g. display ads, search ads, affiliate ads and sponsored content. Before a consumer purchases
a product, he is influenced by these ads as he moves through his decision making process,
which has been commonly captured using the purchase funnel as shown in Figure 1. The
purchase funnel captures the progression of individuals from being unaware about the firm to
purchasing products and becoming the firm’s customers. A fraction of the total population
becomes aware of the firm and moves into the state of awareness. Some of these brand aware
individuals might be further interested in purchasing products from the firm and move into
the next consideration state. Finally, a small fraction of individuals that consider the product
will eventually purchase it. Since each of these stages contains fewer number of consumers
than the previous one, the progression is typically illustrated as a funnel. Consumers enter
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through the top of the funnel, pass through the different stages, and some of them convert.
Each type of ad that a consumer is exposed to helps his move to a further stage on this path,
and some ads are more effective in some stages than others (e.g. display ads in the awareness
stage, and search ads in the consideration stage).

For advertisers using both stages of the funnel, it is important to have an attribution
rule for eventual conversions. This rule will determine who gets credit every time there is
a conversion, conditional on all the ads the user has previously seen. As an example, last-
touch attribution is a widely used attribution model, where all the credit is assigned to the
ad responsible for the last ad exposure before conversion. Last touch is very popular for its
convenience and because it is easy to implement. However it might not be optimal, since it
fails to take into account ads used to build awareness and interest to the consumer.

To address this issue, firms have started offering alternative models like first-touch
(Google, 2017a), where the credit goes to the first ad the user was exposed to because
it was the ad that made him enter the funnel. In even more general multi-touch models, the
advertiser determines how to split the credit between all the ads in a consumer’s trail. For
example, he could give equal weight to all the ads in the trail or give more weight to the
first and the last touch points and less in the middle.

3.2 Fairness and Shapley Value
One approach that has been gaining popularity in the advertising literature for deciding
payment rules is fairness (Berman, 2015; Dalessandro et al., 2012; Abhishek et al., 2016).
Fairness has also been gaining attention in the economics literature since its introduction by
Rabin (1993) to examine game-theoretic problems. Defining fairness has been a challenging
problem and researchers have used a set of axioms to delineate what is fair (van den Brink,
2002; Lan et al., 2010). Shapley (1953) proposed four such natural axioms and proved that
there is a unique rule that satisfies them. We call this rule the Shapley Value, and the payoff
of each player according to this rule is a weighted sum of his marginal contributions to every
subset of players.6 This approach, also referred to as the incremental approach, has been
commonly adopted in the attribution literature (Abhishek et al., 2016; Berman, 2015) and
practice (Google, 2017b). Shapley value is a great attribution rule if our goal is to achieve a
fair result and if the attribution rule we use does not affect the performance or actions of the
players. Now suppose that the effort of each player depends on the attribution rule we use,
and our goal is to maximize the total output of the game. Even though Shapley value based
attribution meets the fairness axioms, it might not be the most optimal for an advertiser.
For example, if a publisher doesn’t get enough credit with the Shapley value, he might put
less effort in showing ads and the advertiser will end up with fewer conversions overall. It
is possible that an alternative attribution scheme might give the publisher higher payouts
so that he puts in more effort with a better overall result. How should we then choose an
attribution rule that maximizes the total value of the game? Our paper tries to answer this
question.

6For a formal definition, see Appendix A.3.
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4 Model

4.1 Overview
Before purchasing a product, a consumer moves through two stages: awareness and consid-
eration.7 This model is based on the idea of a conversion funnel which is frequently used in
marketing (Mulpuru, 2011; Court et al., 2009; Bettman et al., 1998). Every period, a new
consumer arrives in the system and moves to the first stage (awareness).8 A consumer in
the first stage either moves to the second stage (consideration stage) with probability f(a),
or leaves the system. The function f(a) has as argument the advertising level a for the first
stage. The ads in the first stage create awareness, e.g. display ads or sponsored content.
Similarly, a consumer in the second stage either purchases the product with probability g(c),
or leaves the system. c is the advertising level for the second stage. Ads in the second stage
are more transaction oriented and lead directly to conversion, e.g. search ads. Note that it
is not necessary for consumers to see ads in either stage before they purchase as f(0), g(0),
the baseline rates at each stage, can be strictly positive.

Figure 2: General representation of the model.

4.2 Consumer Model
Awareness Stage

For the customer to purchase a product, it should belong in the customer’s consideration
set. If the consumer is not aware of the product, then it is unlikely that he will eventually
purchase the product. We assume that a fraction of consumers (≥ 0) might be aware of
the product even in the absence of advertising. We represent the baseline rate of these
consumers by q0 ∈

[
0, 1

2

]
. Some consumers learn about the product because they have seen

an ad from Publisher 1. The rate of these consumers is a ∈
[
0, 1

2

]
, where a is a decision

variable for Publisher 1. In other words, we assume the functional form f(a) = a+q0 for the
function f (see also Figure 3). When a consumer learns about the product, they move to

7We analyze two stages for clarity of exposition, but out results continue to hold with more than two
stages.

8The model can be generalized by including some stochastic waiting time in each stage, but this does not
influence the results.
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the consideration stage. If a consumer does not learn about the product in this first stage,
which happens with probability 1− q0 − a, they leave the system.9

We assume the convex functional form of w · a2 for the effort that Publisher 1 has to
exert to result in additional conversion a in the first stage. The probability a captures how
effective the publisher is in showing the ads to the relevant audience, while the convexity of
the functional form models diminishing returns to effort by the publisher.10

Stage 1 Stage 2 Purchase

𝑎 𝑐

1 − 𝑎 − 𝑞0 1 − 𝑐 − 𝑝0

𝑞0 𝑝0

ad 1 ad 2

Figure 3: A more detailed representation of the model.

Consideration Stage

After consumers reach the consideration stage and are interested in the product, then we
have the second stage of our model. Some consumers in that stage will decide to buy the
product after seeing an ad from publisher 2. This will happen with probability c ∈

[
0, 1

2

]
,

which is a decision variable for Publisher 2. Some other aware consumers will buy the
product without seeing any ad and this will happen with probability p0 ∈

[
0, 1

2

]
. In other

words, we assume that the function g has the form g(c) = c + p0. The probability that a
consumer in the second stage will not buy the product in the end is 1− p0 − c.

Publisher 2 can be considered as a website with content related to the product, where
aware consumers go to look for more information before they decide if they will buy (e.g. a
search engine, a site with reviews or comparisons of similar products). As before, we assume
the convex functional form of v · c2 for the effort that Publisher 2 has to exert to result in
additional conversion c in the second stage.11

9In the Appendix A.2 we also consider a more general model of the funnel and show how it can be reduced
to the simple model analyzed here.

10Note that the probabilities a and q0 are at most 1
2 , to make sure that f(a) ≤ 1. In reality, these

probabilities are very small, so we don’t lose anything by assuming the upper bound of 1
2 . Moreover, to

make sure that a will not exceed this bound when we find the equilibria, we assume that w is sufficiently
high. We will use the bound w ≥ 1, which is sufficient for our model.

11Similarly to the first stage, we assume that c and p0 are at most 1/2 and to enforce this upper bound of
c in the equilibria, we assume that v ≥ 1.
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4.3 Firm’s Problem
In the absence of advertising, a fraction q0 ·p0 of consumers convert. With online advertising,
the firm gains the ability to convert more consumers ((q0 + a) · (p0 + c)) by showing them
ads. The firm cannot advertise directly, but can use the advertising real estate provided by
the publishers to reach its customers.

The firm can observe the consumers who decided to buy the product and all the ads
they’ve seen prior to that (e.g., through the trail captured in browser cookies). It may not
know the efforts the publishers put (that resulted in the additional rates a and c in the two
stages), or the baseline probabilities q0, p0.12 What the firm can infer by observing a large
number of consumers are the percentages of people who followed each of the four possible
paths before conversion. For example, it will know that an a · c fraction of consumers have
seen an ad from the first publisher in the first stage and an ad from the second publisher
in the second stage before they convert. Similarly, it will know that an a · p0 fraction of
consumers have seen an ad from the first publisher in the first stage and no ad in the second
stage before they convert, and so on (Figure 4).

Firm / Advertiser

Ad 1

No AdNo Ad

No Ad

No Ad

Ad 2

Ad 2Ad 1

𝑞0𝑝0𝑞0𝑐

𝑎𝑝0 𝑎𝑐

Figure 4: The four types of click-streams the firm can observe.

For every conversion, the firm wants to spend some fixed amount in advertising, which
we normalize to $1.13 The question that we address is the optimal way to split this dollar
between the two publishers in order to maximize the conversion rate (a+ q0)(c+ p0).

12The advertiser can potentially observe consumers who do not convert. However, as long as the advertiser
does not observe all the consumers in the market, it cannot determine p0, q0 with certainty.

13This limit on the spend can arise from the cost of the competing outside advertising options, e.g. print
or television advertising.
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4.4 Valid Contracts and Publishers’ Problem
Any attribution rule the firm uses will lead to a contract with the publishers. The publishers
try to maximize their profits by putting in the optimal amount of effort based on the contract
they have with the firm. A contract is defined by two payment functions g1, g2 that satisfy
the equality

g1(a, q0, c, p0) + g2(a, q0, c, p0) = (a+ q0)(c+ p0),

where g1 is the payment to the first publisher and g2 is the payment to the second publisher.
Since (a+ q0)(c+ p0) is the conversion rate and we assume that the firm wants to spend $1
per conversion, the functions g1 and g2 specify how the firm should split their advertising
budget between the two publishers.

Valid Contracts. The contracts that the firm can offer to the publishers must be based
on the information that the firm knows. In this paper we will focus on the class of linear
payment functions with respect to the four products q0p0, q0c, ap0, ac. This type of contracts
have two advantages. First, they don’t require the knowledge of the baseline rates p0, q0 or
the publishers’ efforts a, c to be implemented, but only knowledge of the percentages of
people who followed each of the four possible paths before conversion (Figure 4).14 Second,
even if the baseline rates p0, q0 are known to the advertiser, attribution rules that depend
linearly only on the products q0p0, q0c, ap0, ac can be applied in an online fashion. Every
time there is a conversion, the advertiser can attribute one unit of credit among publishers
based on the conversion path the customer followed. Note also that the widely used class of
multi-touch attribution contracts is a special case of linear contracts.

The profit of the first publisher is given by

π1 = g1(a, q0, c, p0)− w · a2,

where w · a2 is the advertising cost in the first stage. Publisher 1 decides a to maximize his
profits. Similarly, the profit of the second publisher is given by

π2 = g2(a, q0, c, p0)− v · c2,

where v · c2 is the advertising cost in the second stage. Publisher 2 decides c to maximize
his profits.

4.5 Benchmarks
Next, we consider two benchmark models to compare with our main model. In both models,
we assume that the firm and the publishers are integrated, i.e. the firm controls the adver-
tising efforts. In the first model, the goal for the firm is to maximize the social welfare, i.e.
the sum of profits of the two publishers. In the second model, the goal is to maximize the
number of conversions.

14Note that if the firm can only observe the four products q0p0, q0c, ap0, ac, it cannot infer the individual
efforts. This is because for any solution (q0, a, p0, c) that satisfy these products, there are other solutions of
the form

(
q0x, ax, p0

x , c
x

)
, for x > 0 that satisfy them too.
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Maximizing Social Welfare (Publishers’ Optimal) In the first benchmark model,
the firm will make all the decisions about advertising, and its goal is to maximize the social
welfare. The social welfare is equal to the total revenue minus the total cost for the publishers.
Therefore, the optimization problem for the firm is as follows.

max
a,c

(a+ q0)(c+ p0)− (wa2 + vc2)

a, c ≥ 0.

Maximizing Conversion Rate (Firm’s Optimal) There are two ways we could poten-
tially model this benchmark case. One is to model it as an optimization problem with the
conversion rate as the objective and no constraints. In other words, we don’t care about the
cost of advertising effort, but we want to find the optimal effort level that maximizes the
number of conversions. However, this would be unrealistic, simply because we can always
achieve a conversion rate of 1 in this optimization problem.

The more appropriate benchmark is achieved by including a constraint on the cost of
advertising effort. Note that in the main model, the firm can spend $1 for every conversion,
which goes to the two publishers. Therefore, the appropriate benchmark is to determine
the optimal conversion rate given that the cost of advertising effort is exactly the number
of conversions (multiplied by unit revenue per conversion). In other words, the optimization
problem for the firm is as follows.

max
a,c

(a+ q0)(c+ p0)

(a+ q0)(c+ p0) = wa2 + vc2

a, c ≥ 0.

We denote by a∗, c∗ the efforts in the optimal solution of this problem.

5 Multi-Touch Attribution

5.1 Definition of f-contract
We start by considering simple contracts that split conversion credit among the touch points
of a consumer’s trail. The canonical form of such a contract, that we term an f -contract, is
summarized in the following table.

Ad in the Ad in the Credit to Credit to
awareness stage conversion stage Publisher 1 Publisher 2

no no 1
2

1
2

no yes 0 1
yes no 1 0
yes yes f 1− f

The parameter f ∈ [0, 1] is some value determined by the firm or externally. Note that in
the table above, in the case that the consumer sees no ad, we split the dollar equally to the
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two publishers. This is an arbitrary choice made to be consistent with the assumption that
the firm always pays out a dollar for every conversion. However, since this is just the same
constant amount each publisher gets, its value does not affect the equilibrium behavior of
the publishers. In other words, we could also assume that in case of no ad, both publishers
get 0, without any change in our results.

In an f -contract, the profit of the publishers are as follows,

π1 = 1
2q0p0 + ap0 + fac− wa2,

π2 = 1
2q0p0 + q0c+ (1− f)ac− vc2. (1)

Some examples of contracts of this form are the last-touch (f = 0), where all the credit
goes to the last ad a consumer had seen prior to the conversion, and the first-touch (f = 1)
where all the credit goes to the first ad. It is also interesting to note that for f = 1

2 , we get
the Shapley value attribution of this model. In other words, the f -contract captures a wide
range of attribution models commonly used in practice (Google, 2017a).

If we solve for the equilibrium under an f -contract, the equilibrium efforts exerted by
the publishers are as follows,

a(f) = fq0 + 2vp0

4vw − f(1− f) ,

c(f) = (1− f)p0 + 2wq0

4vw − f(1− f) ,

while the conversion rate as a function of f is given by

r(f) = (f 2q0 + 2v(p0 + 2wq0))((1− f)2p0 + 2w(q0 + 2vp0))
(4vw − f(1− f))2 .

5.2 Optimal f-contract
We can now investigate the properties of the optimal contract and show how different pa-
rameters affect the split of the advertising dollar between Publishers 1 and 2. We study the
effect of the baseline conversion rates here and consider the effect of the publisher costs later
in Section 7.1. We then investigate the social welfare properties of the equilibrium of the
f -contract.

5.2.1 Effect of baseline conversion rates

Our first proposition shows how the optimal contract f ∗ varies with baseline rates q0 and
p0. To motivate it, note that if the value of the baseline rate q0 is high, there is already a
high rate of intrinsic conversion in the first stage. This suggests that there is less value in
increasing the incentive to the first publisher in the co-production process, and hence could
lead to lowering f as q0 increases. However, we find the opposite to be the case. (All proofs
are provided in the appendix.)
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Proposition 1. Let f ∗ = f ∗(q0, p0) be the value of f in the optimal f -contract for the firm
as a function of q0 and p0. Then, f ∗ is increasing in q0 and decreasing in p0.

This proposition shows that as the baseline rate of the first stage (q0) increases, the
amount we give to the first publisher in the optimal f -contract increases. We arrive at this
counter-intuitive result because of the way multi-touch contracts compensate publishers. If
the baseline rate in the first stage increases, the number of consumers who don’t see an ad
in the first stage but see an ad from the second publisher in the second stage increases. This
implies that the payoff of the second publisher increases (as shown in Equation 1). Since
there is complementarity between q0 and the effort exerted by Publisher 2, this increases his
incentive to put more effort. However, the incentive for the first publisher does not increase
due to an increase in q0. To balance things out and give incentive to both publishers to
put more effort to increase the overall conversion rate, we should increase the value of f ,
i.e. the amount we give to the first publisher. Increasing f gives Publisher 1 more incentive
to increase a, leading to an overall increase in the total conversion rate. The argument for
the decrease in f ∗ with an increase in p0 is similar as the advertiser wants to incentivize
Publisher 2 to put more effort.
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0.2

0.4

0.6

f *

v=1

v=1.5

v=2

v=2.5

v=3

Figure 5: The value of f ∗ as a function of
q0 for various values of v, p0 = 0.25, and
w = 2.
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Figure 6: The value of f ∗ as a function of
p0 for various values of v, q0 = 0.25, and
w = 2.

Our result indicates that if the level of awareness of a product or brand is high, the family
of f -contracts needs to incentivize the publisher creating awareness even more, as the second
publisher that leads to conversions is automatically receiving a relatively higher payoff. This
suggests the counterintuitive recommendation that well known advertisers should be allocat-
ing relatively more resources to informational advertising. On the other hand, products that
deliver high intrinsic value to consumers so that consumers are likely to buy them if they are
aware of the products represent products with high p0: advertisers for such products should
increase their spending on persuasive forms of advertising (in the second stage). As explained
in the previous paragraph, these will best balance the automatic incentive for increase in
effort in the other stage in optimally splitting the budget. Figures 5 and 6 illustrate the
proposition and show the optimal contract as a function of q0 and p0 for some fixed values
of the parameters.

In the preceding discussion, we presented the properties of the optimal contract. In real-
ity however, the advertiser may not know the baseline rate of awareness and consideration.
However, the following corollary offer insights on how the advertiser should split the ad-
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vertising dollar if he knows the relationship between the two baseline rates in the first and
second stage. If the advertiser has reasons to believe that a larger fraction of consumers are
aware of the product but a relatively smaller fraction are likely to convert on their own then
he should compensate Publisher 1 more if the cost of advertising is the same across the two
publishers.

Corollary 1. Assume that w = v. It holds that

• If q0 > p0, then f ∗ > 1
2 .

• If q0 = p0, then f ∗ = 1
2 .

• If q0 < p0, then f ∗ < 1
2 .

5.2.2 Social Welfare and Price of Anarchy

How does the optimal f -contract perform compared to a centralized solution that maximizes
the social welfare? It is clear that the f -contract will be worse than the first-best or socially
optimal solution in terms of the social welfare, but it is not clear if the resulting conversion
rate would be higher or lower. The following proposition answers this question. It shows that
the first benchmark model, where a central planner maximizes the social welfare, can yield a
result where everyone (including the firm) is better off compared to the optimal f -contract.

Proposition 2. Consider the first benchmark (where we maximize social welfare of the pub-
lishers) and the equilibrium in the optimal f -contract. In the first benchmark, the conversion
rate is higher. Moreover, sometimes the publishers’ payments are higher too.

Proposition 2 shows that the f -contract gives an inefficient equilibrium, since there can be
an alternative solution where everyone is better off. This is a result of the lack of coordination
between the publishers. In the centralized solution, both publishers put more effort which
turns out to be good for both of them. However, in the f -contract equilibrium we observe
a version of the prisoner’s dilemma. In particular, when one of the publishers puts a lot of
effort, the other one prefers to lower his effort and free-ride. We believe that this result is
quite unique in the attribution literature as we show that the general class of f -contracts,
which are commonly used in practice, can result in a prisoner’s dilemma that adversely
affects the efforts exerted by the different publishers.

This result illustrates how multi-channel attribution can be a blind spot for advertisers.
Not only they might have limited information that obstructs their view of what the optimal
attribution is, but there is also some inherent inefficiency in the widely used multi-touch rules.
Thus, even if an advertising firm obtains good estimates of the conversion propensities in
the market and determines the best multi-touch, the outcome can still be inefficient. In
Section 6, we explore how we can use alternative attribution rules to resolve this problem.

Given the inefficiency, a related issue is how bad an f -contract can be in terms of social
welfare. This can be measured by a concept called the Price of Anarchy (Koutsoupias and
Papadimitriou, 1999), defined as the maximum value of the ratio between the social welfare
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in the optimal centralized (first-best) solution and the worst possible social welfare in any
equilibrium.15 The higher the price of anarchy, the more inefficient the equilibrium.16

As an example in our setup, if we consider the last-touch contract (f = 0), with the
publishing costs set as low as possible, i.e. w = v = 1, and the baseline rate of the second
stage set as low as possible, i.e. p0 = 0, then the social welfare in the first benchmark is q2

0
3 ,

while the social welfare in the equilibrium is q2
0
4 . This gives a ratio of 4

3 . In the following
proposition, we show that this is actually the worst possible case, i.e. the price of anarchy is
equal to 4

3 . In other words, the social welfare in an f -contract is never worse that 3
4 of the

optimal.

Proposition 3. Let SWOP T be the social welfare in the first benchmark and SWf be the
social welfare in an f -contract equilibrium. It holds that

1 ≤ SWOP T

SWf

≤ 4
3 .

Moreover, as w → +∞ or v → +∞, the ratio SWOP T

SWf
tends to 1.

The intuition behind why an increase in imbalance of the publishing costs w and v results
in the social welfare approaching the optimal (first-best) social welfare, is that the high costs
resolve the lack of coordination between the publishers in the prisoner’s dilemma described
above. As the cost of advertising in a particular stage increases, the publisher of this stage
puts lesser and lesser effort. At some point he will put no effort at all in both the centralized
solution and the equilibrium. At that point only one publisher exerts effort, which means
that there is perfect coordination resulting in the first-best outcome.

Figure 7 shows the values of the ratio SWOP T

SWLast-Touch
for various parameters. We see that

last-touch performs the worst in terms of social welfare when the cost v in the second stage
is low and when the baseline p0 in the second stage is low. Figure 8 shows the comparison
of the conversion rate in the first benchmark case to the conversion rate under the optimal
f -contract. Note that the conversion rate of the optimal f -contract, similarly to the social
welfare, performs the worst when the costs (v and w) are low.

In summary, for both the firm and the publishers, multi-touch contracts (even the optimal
one) are sub-optimal, while they perform better when there is a high degree of heterogeneity
in the advertising costs across the two channels (i.e. w � v or w � v). This indicates
that advertising will be more efficient (and profitable) in industries where there is a wide
discrepancy in the advertising costs.

6 Beyond Multi-touch Contracts
In the previous section we showed that the general class of f -contracts are generally sub-
optimal. We now consider alternative payment functions and compare them with each other
in terms of the conversion rate in the equilibrium.

15In our case the equilibrium is unique, so we don’t have to worry about determining the worst.
16For a prominent example where this concept is used in computer science, see Roughgarden and Tardos

(2002).
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Figure 7: Social welfare in the first benchmark (publishers’ optimal) over the social welfare
in the last-touch contract as a function of p0 and v, for q0 = 0.25, and w = 2.

6.1 Optimal Contract
One may wonder if there is a valid contract (in the sense of Section 4.4) that achieves the
optimal conversion rate (the one achieved in the second benchmark by a central planner).
The following proposition shows that this is actually possible with a contract that is linear
w.r.t. the observed products q0p0, q0c, ap0, ac.

Proposition 4. There is a contract that achieve the optimal conversion rate, given by the
following payment functions.

g1(a, q0, c, p0) = 1
2q0p0 + sap0 + tq0c+ fac

g2(a, q0, c, p0) = 1
2q0p0 + (1− s)ap0 + (1− t)q0c+ (1− f)ac

The values of s, t, f are defined below.

s = 1 + q0p0 + 2v(c∗)2

2a∗p0

t = −q0p0 + 2w(a∗)2

2q0c∗

f = 1
2 + −a

∗p0 + q0c
∗ + 3w(a∗)2 − 3v(c∗)2

2a∗c∗

Note that a∗, c∗ in the above proposition are the optimal values of the optimization
problem in the second benchmark (Section 4.5).

17



0.1 0.2 0.3 0.4 0.5
p0

1.06

1.08

1.10

1.12

1.14

1.16

CR
1st benchmark

CRf*

v=1

v=1.5

v=2

v=2.5

v=3

Figure 8: Conversion rate in the second benchmark (firm’s optimal) over the conversion rate
in the optimal f -contract as a function of p0 for various values of v, q0 = 0.25, and w = 2.

In order to understand why the contract in Proposition 4 achieves the optimal rate, it is
useful to compare it to the payments for the publishers in Equation 1. As mentioned earlier,
any f -contract suffers from a free-riding problem. Both publishers want the other publisher
to exert effort that leads to a prisoner’s dilemma. In the payoff outlined here, the publishers
are punished for the effort exerted by the other publisher (both t and 1−s are negative). This
payment scheme disincentivizes both publishers from free-riding. By appropriately choosing
s, t and f , the advertiser is able to achieve perfect coordination between the publishers. In
equilibrium the publishers’ profits are zero (their outside option).17

A drawback of the aforementioned contract is that it is not clear how an advertiser can
implement this contract if he has incomplete information about q0 and p0, which are required
to determine the values of a∗ and c∗.

Even though the preceding contract might not be implementable, it provides us the
intuition that contracts that penalize publishers for the effort of the other publisher, instead
of just compensating them for their efforts, tend to work better. The penalty due to under-
performance can increase the efficiency of the system, because it gives incentive to both
publishers to put more effort instead of free-riding and depending on the effort of the other
publisher. In the following subsection, we define one such contract. We call it a reinforcement
contract18 and show that it performs better than any multi-touch contract in the majority
of the cases. Moreover, the firm does not need to know the exact values of the baseline
probabilities to implement it, which makes it more practical.

6.2 Reinforcement Contracts
Perhaps the simplest form of a valid contract is given by the payment function g1 = 1

2(a +
q0)(c + p0), which we call equal-split. According to this payment, both publishers get the

17We can extend the model such that the publishers have a non-zero outside option, but the qualitative
results do not change.

18The name is motivated by the similarity to rewarding good performance and penalizing bad performance
in reinforcement learning.
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same credit for every conversion. The reinforcement or (r)-contract is a generalization of the
equal-split (r = 0) and it is given by the following payment function.

g1 =
(

1
2 +

(
a

a+ q0
− c

c+ p0

)
r

)
(a+ q0)(c+ p0), for r ∈ R.

It is evident from the preceding equation that an (r)-contract not only compensates
publishers for the effort they put, but it also penalizes them for the effort the other publisher
puts. The following table shows the canonical form of the corresponding attribution rule.

Ad in the Ad in the Credit to Credit to
awareness stage conversion stage Publisher 1 Publisher 2

no no 1
2

1
2

no yes 1
2 − r

1
2 + r

yes no 1
2 + r 1

2 − r
yes yes 1

2
1
2

Note that r can take values above 1
2 , i.e. this attribution rule has the unique property of being

able to assign negative credit to channels that do not appear in conversion paths.19 Thus,
instead of focusing only on the touch points like the multi-touch attribution rules do, it pays
attention to non-touch points as well. This change of focus can help resolve the commitment
problem illustrated in Section 5.2.2. The following proposition will help us determine the
optimal (r)-contract.

Lemma 1. The conversion rate under an (r)-contract is a convex function of r.

Lemma 1 tells us that the optimal (r)-contract is achieved for the maximum possible value
of r that keeps both publishers into the game, i.e. both publishers have non-negative payoff
by putting some effort in the equilibrium. This is useful, because in a practical situation
the firm can determine the optimal (r)-contract by increasing the value of r until one of
the publishers drops out. In other words, implementing the (r)-contract reduces to a simple
search problem in a repeated dynamic environment.

A practical way to implement a type of reinforcement contract like the (r)-contract is
to use an attribution method that assigns negative credit to publishers who do not appear
in a conversion path. This will incentivize publishers to put more effort into being part of
conversion paths, and as a result the conversion rates will increase.

In Figure 9, we can see a comparison of performance of the different contracts we consid-
ered in this paper. As we can see, the optimal (r)-contract performs significantly better than
any other contract that does not require the knowledge of the baselines in the majority of the
cases (except for very small values of q0, where an f -contract is better). The chosen values
of the parameters for drawing the plot are arbitrary and the picture looks very similar for
different values as well. Note also that in the symmetric case, i.e. when w = v and q0 = p0,
the optimal (r)-contract achieves the first best conversion rate.

19In an f -contract, even if we allow f to take negative values, it is never optimal to do so. As we can see
in the proof of Proposition 1, it is always 0 ≤ f∗ ≤ 1.
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Figure 9: Conversion rate for different contracts as a function of q0 (for w = v = 2 and
p0 = 0.25). The first best is the one that maximizes conversion rate. The reinforcement
contract is second best for a wide range of parameter values.

7 Extensions
In this section, we first discuss how the optimal f -contract behaves as a function of the
cost parameters of the publishers, and how a firm can choose the optimal f -contract under
limited uncertain information about baseline conversion rates. Then we examine the effect
of competition on the advertising game.

7.1 Effect of Cost Parameters of Publishers in Optimal f-contracts
We now return to the popular f -contracts and explore how the advertising dollar might be
split between the two publishers based on the difficulty of advertising in the different stages.
The advertising cost can be driven by several factors, e.g. the reach of a publisher, its ability
to target the right set of consumers, the intensity of advertising by competitors, or type of
the product being sold.

Recall that w represents the cost of advertising effort in the first stage, and v the corre-
sponding value for the second.

Proposition 5. There is a threshold w ∈ [1,+∞] such that f ∗ is decreasing in w for
w ∈ [1, w] and increasing in w for w ∈ [w,+∞).20 Similarly, there is a threshold v ∈ [1,+∞]
such that f ∗ is increasing in v for v ∈ [1, v] and decreasing in v for v ∈ [v,+∞).

Interestingly, f ∗ is not monotone with respect to w. It is easy to see that when the cost of
advertising in the first stage increases, Publisher 1 would reduce the amount of effort. As the

20w is given implicitly by the solution to the equation w = p0(1−f∗(w))
2q0

.
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Figure 10: The value of f ∗ as a function of w, for q0 = 0.1, p0 = 0.4, and v = 10. The
monotonicity changes at w = 1.909.

result, the advertiser compensates Publisher 1 by increasing f ∗ to induce more effort as w
increases. However, we find that when w is sufficiently small, f ∗ decreases when w increases.
In order to understand this counterintuitive finding, it is important to note that even though
Publisher 1 is affected directly due to the increase in advertising cost, Publisher 2 is also
affected indirectly as w increases. This results in Publisher 2 exerting less effort because his
payoff is reduced due to the multiplicative factor of the two efforts in the payoff function
presented in Equation 1. Consequently, the advertiser needs to incentivize both publishers
to increase the effort. When w is relatively small, it is easier to increase the effort exerted
by Publisher 1 as compared to Publisher 2. Under this condition, it is more important to
increase the fraction paid to Publisher 2 to increase the overall conversion rate, which leads
to a decrease in f ∗ with w. Figure 10 shows the variation in f ∗ with w.

The following corollary shows how the different advertising costs affect f ∗. A firm which
uses multi-touch attribution for its campaign should give more credit to the advertising
channel with the highest publishing cost, all else being equal.

Corollary 2. Assume that q0 = p0. It holds that

• If w > v, then f ∗ > 1
2 .

• If w = v, then f ∗ = 1
2 .

• If w < v, then f ∗ < 1
2 .

7.2 Implementing the f-contract Under Uncertainty
To find the optimal f -contract, the firm needs to know the baseline rates q0, p0. In this
section, we propose an approach that can be used by the firm to determine the optimal
f under asymmetric information. The following proposition shows that using very little
information the firm can derive the optimal (in expectation) f -contract.

Proposition 6. Assume that the firm does not know the values of q0, p0, but it has some
information about the distributions from which they are drawn. Then, the firm can calculate
the value f ∗ of the optimal (in expectation) f -contract, by only using the moments E[q0p0],
E[q2

0], and E[p2
0].
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This proposition shows that the advertiser does not need too much information to derive
f ∗. As long as he knows the second moments of the baseline rates , he can find the optimal
split between the two publishers. Now, suppose that a firm knows that both the publishing
costs and the expected baselines rates are the same in the two stages, the following corollary
sheds light on how the advertiser should set f ∗.

Corollary 3. Let f ∗ be the value of the optimal (in expectation) f -contract for the firm. If
v = w and E[q0] = E[p0], then

• If Var[q0] = Var[p0], then f ∗ = 1
2 .

• If Var[q0] > Var[p0], then f ∗ > 1
2 .

• If Var[q0] < Var[p0], then f ∗ < 1
2 .

Corollary 3 shows that a firm which uses multi-touch attribution for its campaign should
give more credit to the advertising channel with higher uncertainty about the baseline rate,
all else being equal.

7.3 Competition in Each Stage
In this extension, we assume that both publishers can show ads in both stages of the game.
In other words, there is competition not only across stages but also in each stage. In this
variation, we want to see how increased competition between the publishers will affect our
results.

As in the original model, there is a continuum of consumers of mass 1 moving as in the
diagram of Figure 2. The variable a now will be a vector (a1, a2), where a1 is a decision
variable for the first publisher, with cost w1a

2
1, and a2 is a decision variable for the second

publisher, with cost w2a
2
2. Similarly, the variable c will be a vector (c1, c2), where c1 is a

decision variable for the first publisher, with cost v1c
2
1, and c2 is a decision variable for the

second publisher, with cost v2c
2
2. For the functions f and g, we assume the functional forms

f(a) = a1 + a2 + q0 and g(c) = c1 + c2 + p0, where q0 and p0 are the baseline probabilities.
In each stage, we assume that a consumer can see at most one ad. The effort a1 represents

the probability that during the awareness stage he will see an ad from the first publisher, a2
is the probability that he will see an ad from the second publisher, and q0 is the probability
that he will move to the conversion stage without seeing an ad. Similarly, the effort c1
represents the probability that during the conversion stage he will see an ad from the first
publisher, c2 is the probability that he will see an ad from the second publisher, and p0
is the probability that he will decide to buy the product without seeing an ad during the
conversion stage.

As before, we assume that the baseline probabilities q0, p0 cannot be more than 1
2 and

that the cost parameters v1, v2, w1, w2 are sufficiently large (so that f(a), g(c) ∈ [0, 1] in the
equilibrium).

For every conversion, the firm wants to spend $1 in advertising. The question is what
is the optimal way to split this dollar between the two publishers in order to maximize the
number of conversions, which is f(a)g(c).

The equivalent of an f -contract in this variation is summarized in the following table.
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Ad in the Ad in the Credit to Credit to
awareness stage conversion stage Publisher 1 Publisher 2

0 0 1
2

1
2

0 1 1 0
0 2 0 1
1 0 1 0
1 1 1 0
1 2 f 1− f
2 0 0 1
2 1 1− f f
2 2 0 1

A 0 in the first two columns means no ad, a 1 means ad from the first publisher and a 2
means ad from the second publisher. The parameter f ∈ [0, 1] is some value determined by
the firm or externally.

As in the original model, some examples of contracts of this form are the last-touch
(f = 0), where all the credit goes to the last ad the consumer had seen prior to the conversion,
and the first-touch (f = 1) where all the credit goes to the first ad, which made the consumer
aware of the product. The following lemma will help us determine the optimal f -contract in
this extended model.

Lemma 2. Let r(f) be the conversion rate in an f -contract as a function of f . Then, r(f)
is concave in (0, 1).

Since r(f) is concave, we know that the optimal value f ∗ is either the single root of the
equation r′(f) = 0 in (0, 1) (when it exists), or 0, or 1. More specifically, if r′(f) < 0 in
(0, 1), then f ∗ = 0. If r′(f) > 0 in (0, 1), then f ∗ = 1. If there is a root f such that r′(f) = 0,
then it is unique and f ∗ is equal to this root.

To show the robustness of our results in this extended model, we consider the following
numerical examples.

Figures 11 and 12 are the analogs of Proposition 1. As we can see, f ∗ is increasing in q0
and decreasing in p0.
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Figure 11: Optimal f for different values
of q0, for v1 = v2 = w1 = w2 = 2, p0 = 1
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Figure 12: Optimal f for different values
of p0, for v1 = v2 = w1 = w2 = 2, q0 = 1
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Figure 13: Social Welfare
in the equilibrium (purple)
and in the first best (blue)
for different values of q0, for
v1 = v2 = w1 = w2 = 2,
p0 = 1

4 , f = 0.
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Figure 14: First publisher’s
profit in the equilibrium
(purple) and in the first
best (blue) for different val-
ues of q0, for v1 = v2 =
w1 = w2 = 2, p0 = 1

4 ,
f = 0.
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Figure 15: Firm’s revenue
in the equilibrium (purple)
and in the first best (blue)
for different values of q0, for
v1 = v2 = w1 = w2 = 2,
p0 = 1

4 , f = 0.

Figures 13, 14, and 15 are the analogs of Proposition 2. As we can see, in the first best
the conversion rate is higher, and sometimes publisher’s profits are higher too.

Figures 16 and 17 are the analogs of Proposition 3. In this case, the upper bound of the
ratio is even tighter at 512

507 .
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Figure 16: Ratio of Social welfare in the
first best over the Social welfare in the
equilibrium for different values of a, for
q0 = p0 = 1

4 , f = 0, v1 = w2 = lo = 2,
v2 = w1 = hi, hi = a · lo. The limit as
a→∞ is 512

507 = 1.00986.
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Figure 17: Ratio of Social welfare in the
first best over the Social welfare in the
equilibrium for different values of a, for
q0 = p0 = 1

4 , f = 0, v1 = v2 = lo = 2,
w1 = w2 = hi, hi = a · lo. The limit as
a→∞ is 1.

Finally, Figures 18 and 19 are the analogs of Proposition 6 and Corollary 3. The firm
can determine f ∗ by using the moments E[q0p0], E[q2

0], and E[p2
0]. Moreover, if q0 and p0

have the same mean, but q0 has higher variance, then f ∗ > 1
2 .

8 Conclusion
The online advertising industry has continued to grow rapidly in the last two decades. While
it offers several advantages over traditional advertising, the information asymmetry and
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Figure 19: Firm’s revenue for different
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4 and
E[p2

0] = 1
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12 , for v1 = w1 =

v2 = w2 = 2. The optimal value is for
f = 0.556179.

misalignment of incentives between the advertisers and publishers poses a threat to this
industry in form of ad fraud, substandard ad inventory, and sub-optimal effort by advertisers.
In this paper, we formalize this problem in the context where consumers move through
two stages before they purchase and show how standard contracts, also known as multi-
touch contracts, might not lead to the most effective outcome for advertisers and publishers.
Multi-touch contracts can result in the advertiser receiving lower return on investment and
the publishers generating smaller revenues in equilibrium. The inefficiency in multi-touch
attribution arises due to a prisoner’s dilemma where the dominant strategy of publishers in
both stages is to exert less effort in showing ads. We also show that our results are in line
with real-world observations. Furthermore, motivated by optimal contracts, we introduce
reinforcement contracts, that penalize publishers if they exert relatively less effort than the
other publisher, and show how they can reduce the prisoner’s dilemma and lead to higher
profits for the advertiser.

Our research has several managerial implications. One important findings of our research
is that advertisers should spend a relatively larger fraction of their advertising budget on
the stage of the purchase funnel that they believe has a higher baseline conversion rate. E.g.
if an advertiser knows that the level of brand (or product) awareness is higher than the
baseline conversion probability in the consideration stage, they should spend more on brand
advertising, even if the exact levels are unknown. Secondly, in industries where the cost to
create awareness is similar to the cost of showing consumers ads to drive conversion, the
advertisers should engage with publishers that can show ads in both stages of the funnel.
This will reduce the prisoner’s dilemma across the stages and help in better coordination of
the incentives between the advertiser and the publisher. Furthermore, the results presented
in this paper underscore the need for better transparency in online advertising. The online
advertising ecosystem is becoming extremely complicated with many participants, often with
misaligned incentives. This has led to an increase in data fragmentation, which increases the
information asymmetry. This can lead to online advertising becoming a less effective medium
and reduce advertisers’ desire to move their advertising budget online. Sharing information
across all the participants resolves this problem and can increase the effectiveness of online
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advertising, making both advertisers and publishers better off. Finally, if the advertiser has
enough market power, it should carefully consider reinforcement contracts for attribution to
increase the returns from advertising. This will prevent the publishers from getting stuck in
the unfavorable prisoner’s dilemma equilibrium.

Our research has a few limitations and presents directions for future work. Our model
focuses on a single advertiser as he allocates credit between competing publishers. In that
sense, our advertiser has market power to dictate the attribution rule. A possible extension is
to consider how competition between different advertisers can affect the attribution process,
where the market power of one advertiser would be considerably reduced. Our insights can
be used by each advertiser in the stage of budget allocation among different advertising
channels, but advertisers’ competition could give some extra insights on patterns of overall
spending.

The reinforcement attribution contracts we suggest as improvement over multi-touch con-
tracts have some good theoretical properties and are more practical than optimal contracts,
but there might still be some challenges in their implementation. The key insight from them
is that assigning negative credit to non-appearances of advertising channels in conversion
paths can be beneficial for the advertiser, because it increases competition between the pub-
lishers and it incentivizes them to put more effort. However, an advertiser who wants to
implement such an attribution contract should also take into account the quality of the ads.
A low-quality ad that appears in a lot of conversion paths should not be incorrectly consid-
ered as important for conversions. To do this properly, an advertiser needs to have sufficient
data about consumer paths that did not lead to a conversion. A future research direction,
therefore, is to dive more into the intricacies regarding making reinforcement contracts more
practical.

Finally, one important result of our research is to show that an attribution based on
Shapley value is often not optimal for advertisers. Shapley value uses the marginal contri-
bution of each publisher to the conversion rate in order to provide a fair attribution, but it
does not take into account the publishers’ incentives. As a result, we have shown that there
are alternative attribution schemes with better results for the advertiser. Another future re-
search direction is to extend the framework of this paper and provide a general formulation
of an optimal scheme for ad attribution.
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A Appendix

A.1 Analyses and Proofs
Proof of Proposition 1. The payoff of the first publisher in the f -contract is 1

2q0p0 + ap0 +
fac − wa2, while the payoff of the second publisher is 1

2q0p0 + q0c + (1 − f)ac − vc2. This
means that the equilibrium efforts are a = fq0+2vp0

4vw−f(1−f) and c = (1−f)p0+2wq0
4vw−f(1−f) . Therefore, the

conversion rate in the equilibrium is

r(f) = (f 2q0 + 2v(p0 + 2wq0))((1− f)2p0 + 2w(q0 + 2vp0))
(4vw − f(1− f))2 .

It holds that r′(f) =

−4f 3(vp2
0 + wq2

0) + 12f 2vp2
0 − 4f(4v2wp2

0 + 3vp2
0 + 8vwp0q0 + 4vw2q2

0) + 4(p2
0v + 4vwp0q0 + 4vw2q2

0)
(4vw − f(1− f))3 .

The discriminant of the cubic formula in the numerator is

∆ = −256v2w2(2(vp2
0 + wq2

0) + p0q0)3(2(vp2
0 + wq2

0)(27 + 16vw) + 9(3 + 16vw)p0q0) ≤ 0,

which means that the equation r′(f) = 0 has a single real root. It’s also r′(0) = p2
0v+4vwp0q0+4vw2q2

0
16v3w3 ≥

0 and r′(1) = − (q0+2p0v)2

16v3w2 ≤ 0. Therefore, the single root is in the interval [0, 1]. That root
is the value of f ∗. The result is a long expression, so to write it down we use the following
notation. Let

x = wq2
0, y = vp2

0, z = q0p0, H = 2(x+ y) + z

A = H
(
H(16xy + 27z2) + 128xyz

)
,

B = 3

√
xyH

(
9(x− y)zH +

√
3(x+ y)

√
A
)
,

n = 3
√

12,m = 2 3
√

18.

Then
f ∗ = y

x+ y
+ nB2 −mxyH(H + 2z)

6(x+ y)zB .

Now, we need to prove that f ∗ is increasing in q0 and decreasing in p0. We’ll start by proving
that it is increasing in q0. Since r′(f ∗) = 0, it holds that

−a(f ∗)3 + b(f ∗)2 − cf ∗ + d = 0,

where a = 4(vp2
0 + wq2

0), b = 12vp2
0, c = 4(4v2wp2

0 + 3vp2
0 + 8vwp0q0 + 4vw2q2

0), and d =
4(p2

0v + 4vwp0q0 + 4vw2q2
0). By taking partial derivatives with respect to q0 and solving for

∂f∗

∂q0
, we get

∂f ∗

∂q0
=
− ∂a

∂q0
(f ∗)3 + ∂b

∂q0
(f ∗)2 − ∂c

∂q0
f ∗ + ∂d

∂q0

3a(f ∗)2 − 2bf ∗ + c
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The denominator is equal to

12(vp2
0 + wq2

0)(f ∗)2 − 24vp2
0f
∗ + 4(4v2wp2

0 + 3vp2
0 + 8vwp0q0 + 4vw2q2

0) =
12vp2

0(f ∗ − 1)2 + 12wq2
0(f ∗)2 + 16vw(vp2

0 + 2p0q0 + wq2
0) ≥ 0,

therefore, it is enough to prove that the numerator is positive. The numerator is equal to

8w(−q0(f ∗)3 − 4vw(p0 + wq0)f ∗ + 2vw(p0 + 2wq2
0)),

thus we need to prove that −q0(f ∗)3 − 4vw(p0 + wq0)f ∗ + 2vw(p0 + 2wq2
0) ≥ 0. We know

that 1 = a(f∗)3−b(f∗)2+cf∗

d
, so it is enough to prove that

−q0(f ∗)3 − 4vw(p0 + wq0)f ∗ + 2vw(p0 + 2wq2
0)a(f ∗)3 − b(f ∗)2 + cf ∗

d
≥ 0,

or equivalently

fp0 ((2vp0 − q0)(f ∗)2 − 6vp0f
∗ + 4vw(q0 + 2vp0) + 2p0v)

p0 + 2wq0
≥ 0.

It is

(2vp0 − q0)(f ∗)2 − 6vp0f
∗ + 4vw(q0 + 2vp0) + 2p0v =

vp0
(
2(f ∗)2 − 6f ∗ + 2 + 8vw

)
+ q0

(
−(f ∗)2 + 4vw

)
≥

vp0
(
2(f ∗)2 − 6f ∗ + 2 + 8

)
+ q0

(
−(f ∗)2 + 4

)
=

2vp0

((
f ∗ − 3

2

)2
+ 11

4

)
+ q0 (2− f ∗) (2 + f ∗) ≥ 0.

Therefore, it holds that ∂f∗

∂q0
≥ 0, which means that f ∗ is increasing in q0. Because of

symmetry, 1− f ∗ is increasing in p0, which means that f ∗ is decreasing in p0.

Proof of Corollary 1. Let w = v. If q0 = p0, it holds that wq2
0 = vp2

0, therefore using the
notation of the proof of Proposition 1, x = y. This means that

A = (4x+ z)((4x+ z)(16x2 + 27z2) + 128x2z) = (4x+ z)(4x+ 3z)3

and
B = 3

√
2x3(4x+ z)

√
3
√
A = x

3
√

2
√

3
√

(4x+ z)(4x+ 3z).

Thus,

nB2 −mxyH(H + 2z) = 2x2 3
√

18(4x+ z)(4x+ 3z)− 2 3
√

18x2(4x+ z)(4x+ 3z) = 0,

which means that f ∗ = y
x+y

= 1
2 .

From Proposition 1, we know that f ∗ is increasing in q0, therefore if q0 > p0, f ∗ > 1
2 , and

if q0 < p0, f ∗ < 1
2 .
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Proof of Proposition 2. The optimal efforts (in terms of social welfare) are aOP T = q0+2vp0
4vw−1

and cOP T = p0+2wq0
4vw−1 . In an f -contract, the equilibrium efforts are af = fq0+2vp0

4vw−f(1−f) and
cf = (1−f)p0+2wq0

4vw−f(1−f) . It holds that aOP T ≥ af and cOP T ≥ cf , which means that the conversion
rate is higher in the first benchmark. This is true for every f -contract, therefore for the
optimal f ∗-contract as well.

The first publisher’s payment in the first best solution (under an f -contract) is

p1,OP T = q0p0

2 + (2p0v + q0)(p0(f + 2vw − 1) + (2f − 1)q0w)
(4vw − 1)2 ,

while in the equilibrium of an f -contract is

p1,f = q0p0

2 + w(fq0 + 2p0v)2

(4vw − f(1− f))2 .

We want to prove that sometimes p1,OP T ≥ p1,f∗ . More specifically, we’ll show that this is
true for the symmetric case where q0 = p0 and v = w. In that case, it is f ∗ = 1

2 and the
inequality p1,OP T ≥ p1,f∗ is equivalent to

1
2(2w − 1) ≥

4w
(4w − 1)2 ,

which is true, since it is equivalent to 16w2 − 8w + 1 ≥ 16w2 − 8w.

Proof of Proposition 3. The inequality SWOP T

SWf
≤ 4

3 is equivalent to

a′q0p0 + b′q2
0 + c′p2

0 ≤ 0,

where

a′ = 4(1− f)2f 2 + 32(1− f)fv2w2 − 4((1− f)2f 2 + 8(1− f)f − 4)vw − 64v3w3,

b′ = w
((

3(1− f)2 + 4
)
f 2 + 8(1− f)(2− f)vw − 16v2w2

)
,

c′ = v
((

3f 2 + 4
)

(1− f)2 + 8f(1 + f)vw − 16v2w2
)
.

Therefore, it is enough to prove that a′ ≤ 0, b′ ≤ 0, and c′ ≤ 0.
The expression (3f 2 + 4) (1− f)2 + 8f(1 + f)vw− 16v2w2 is a second degree polynomial

with respect to vw with largest root

f(1 + f) + 2
√

1− (1− f)f (2 + f 2)
4 ≤ 1.

Since vw ≥ 1, i.e. larger than the larger root, and the coefficient of v2w2 is negative, the
value of the polynomial is non-positive. This means that c′ ≤ 0. Similarly, b′ ≤ 0 (we just
replace f with 1− f).

For a′, we have that

a′ + 48 = 4(1− vw)
(
4(3 + 4vw) + (4vw − (1− f)f)2

)
≤ 0,
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which means that a′ < 0, and we are done.
The upper bound of the ratio is achieved for (p0, f, v, w) = (0, 0, 1, 1) or (q0, f, v, w) =

(0, 1, 1, 1).
It remains to show that as w → +∞ or v → +∞, the ratio SWOP T

SWf
tends to 1. It holds

that SWOP T

SWf
=

(4vw − f(1− f))2 (vp2
0 + wq0(4vp0 + q0)

)
(4vw − 1) (w (f2q0(8vp0 + q0)− 8fvp0q0 + 4vp0(vp0 + q0)) + (1− f)2p0 (f2q0 + vp0) + 4vw2q0(4vp0 + q0)) .

Both the numerator and the denominator are third degree polynomials in w. The coefficients
of w3 in both of these polynomials are equal to 16v2q0(4vp0 + q0). Therefore, as w → +∞,
the ratio goes to 16v2q0(4vp0+q0)

16v2q0(4vp0+q0) = 1. Similarly, as v → +∞, the ratio goes to 1.

Proof of Proposition 4. Let a∗, c∗ be the efforts in the optimal solution (second benchmark).
We define the payments functions

g1(a, q0, c, p0) = 1
2q0p0 + sap0 + tq0c+ fac

and
g2(a, q0, c, p0) = 1

2q0p0 + (1− s)ap0 + (1− t)q0c+ (1− f)ac,

where

s = 1 + q0p0 + 2v(c∗)2

2a∗p0
,

t = −q0p0 + 2w(a∗)2

2q0c∗
,

f = 1
2 + −a

∗p0 + q0c
∗ + 3w(a∗)2 − 3v(c∗)2

2a∗c∗ .

Since a∗, c∗ are the optimal efforts, we know that they satisfy the equality

(a∗ + q0)(c∗ + p0) = w(a∗)2 + v(c∗)2.

It is
∂(g1(a, q0, c

∗, p0)− wa2)
∂a

∣∣∣∣∣
a=a∗

= sp0−2wa∗+fc∗ = (a∗ + q0)(c∗ + p0)− w(a∗)2 − v(c∗)2

2a∗ = 0.

Similarly,

∂(g2(a∗, q0, c, p0)− vc2)
∂c

∣∣∣∣∣
c=c∗

= (1−t)q0−2vc∗+(1−f)a∗ = (a∗ + q0)(c∗ + p0)− w(a∗)2 − v(c∗)2

2c∗ = 0.

This means that (a∗, c∗) is the equilibrium under the contracts g1, g2. To complete the proof,
we need to verify that the payoffs of the two publishers in the equilibrium are non-negative.
For the payoffs, we have that

g1(a∗, q0, c
∗, p0)− w(a∗)2 = (a∗ + q0)(c∗ + p0)− w(a∗)2 − v(c∗)2

2 = 0
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and
g2(a∗, q0, c

∗, p0)− v(c∗)2 = (a∗ + q0)(c∗ + p0)− w(a∗)2 − v(c∗)2

2 = 0.

Proof of Lemma 1. The conversion rate under an (r)-contract is equal to(
(2r + 1)(q0 + 4p0v)

16vw − 1 + q0

)(
(2r + 1)(p0 + 4q0w)

16vw − 1 + p0

)
,

which is a convex function of r. Furthermore, the conversion rate is maximized when the
participation constraint for one of the publisher is binding.

Proof of Proposition 5. Using the same notation as in the proof of Proposition 1, we have
that

∂f ∗

∂w
=
− ∂a

∂w
(f ∗)3 + ∂b

∂w
(f ∗)2 − ∂c

∂w
f ∗ + ∂d

∂w

3a(f ∗)2 − 2bf ∗ + c

and we know that the denominator is positive, therefore we need to see when the numerator
is positive. Let N be the numerator, then it holds that

wN = wN − (−a(f ∗)3 + b(f ∗)2 − cf ∗ + d) = 4(1− f ∗)v(4w2q2
0 − (1− f ∗)2p2

0).

Therefore, the numerator is positive iff 2wq0 > (1− f ∗)p0 and negative if 2wq0 < (1− f ∗)p0.
This means that when f ∗ is bellow the line 1− 2wq0

p0
, f ∗ is decreasing in w, and when it’s above

that line, it’s increasing in w. From this and the fact that f ∗ is continuous, we conclude that
f ∗ can cross the line 1 − 2wq0

p0
in at most one point. If that point exists, then w is the root

of the equation f ∗ = 1 − 2wq0
p0

with respect to w. If that point doesn’t exist, then either f ∗
is always increasing, which means w = 1, or always decreasing, which means w = +∞.

The result for v now follows because of symmetry.

Proof of Corollary 2. Let q0 = p0. Similarly to the proof of Corollary 1, if w = v, it is x = y
and therefore f ∗ = 1

2 .
For the other two parts, we need the fact that if q0 = p0, then f ∗ is increasing in w.

This doesn’t come immediately from Proposition 5, but we’ll show that it is true. Using the
notation of the proof of Proposition 5, we have that

wN = 4(1− f ∗)v(4w2q2
0 − (1− f ∗)2p2

0) =
= 4(1− f ∗)v(4w2 − (1− f ∗)2)q2

0 ≥
≥ 4(1− f ∗)v(4− (1− f ∗)2)q2

0 =
= 4(1− f ∗)v(1 + f ∗)(3− f ∗)q2

0 ≥ 0.

Therefore, ∂f∗

∂w
≥ 0 and the result follows.

Proof of Proposition 6. For the expected conversion rate, we have that

E[r(f)] = E[p2
0](2(1− f)2v + 8v2w) + E[q2

0 ](2f2w + 8vw2) + E[p0q0]((1− f)2f2 + 4vw + 4(1− f)2vw + 4f2vw + 16v2w2)
(4vw − f(1− f))2 .

In other words, it depends only on E[q0p0], E[q2
0], and E[p2

0].
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Proof of Corollary 3. Let w = v and E[q0] = E[p0]. Using the notation of the proof of
Proposition 1 with the difference that now x = wE[q2

0], y = v E[p2
0], and z = E[q0p0] (instead

of wq2
0, vp

2
0, and q0p0), we know that f ∗ is the single real root of the polynomial −af 3 +

bf 2 − cf + d, where a = 4(x + y), b = 12y, c = 4(4vwy + 3y + 8vwz + 4vwx), and d =
4(y + 4vwz + 4vwx).

If Var[q0] = Var[p0], then that implies E[q2
0] = E[p2

0], which means that x = y. For f = 1
2 ,

we get −af 3 + bf 2 − cf + d = 1
2(x − y)(16vw − 1) = 0. This means that 1

2 is the root, i.e.
f ∗ = 1

2 .
If Var[q0] > Var[p0], then x > y. The coefficient of f 3 in the polynomial above is negative

and since it has a single real root, the polynomial is positive for f smaller than the root and
negative for f larger the root. For f = 1

2 , we get −af
3+bf 2−cf+d = 1

2(x−y)(16vw−1) > 0.
This means that for the root f ∗, it holds that f ∗ > 1

2 .
Similarly, if Var[q0] < Var[p0], then x < y. Therefore, for f = 1

2 , we get −af 3 + bf 2 −
cf + d = 1

2(x− y)(16vw − 1) < 0, which means that f ∗ < 1
2 .

Proof of Lemma 2. Here is the sketch of the proof in 11 steps:

• To prove that r(f) is concave, it is enough to prove that r′(f) is decreasing in (0, 1).

• To prove that r′(f) is decreasing, it is enough to prove that r′′(f) is negative in (0, 1).

• We can write r′′(f) as h(f)g(f).

• We can prove that h(f) is positive in (0, 1). Therefore, it is enough to prove that g(f)
is negative in (0, 1).

• To prove that g(f) is negative in (0, 1), it is enough to prove that g(f) is convex in
(0, 1) and that g(0) < 0 and g(1) < 0.

• We can prove that g(0) < 0 and g(1) < 0, so it remains to prove that g(f) is convex
in (0, 1).

• To prove that g(f) is convex in (0, 1), it is enough to prove that g′′(f) is positive in
(0, 1).

• To prove that g′′(f) is positive in (0, 1), we can first prove that g′′(f) is convex, and
then that g′′(m) > 0, where m is the point in (0, 1) where g′′ attains its minimum.

• To prove that g′′(f) is convex, we can prove that g(4)(f) is positive in (0, 1).

• To find m, we will solve the equation g(3)(f) = 0, which will give a single root.

• Finally, we can prove that g′′(m) > 0.
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A.2 A More General Model and Equivalence
In this section, we justify some simplifications we made in our model in order to make it
easier to analyze. We start with a general model that captures all the important things
that we want to model, and then we see how we can transition from the general model to
our model. In the end, we prove an equivalence result, where we show that for any set of
parameter values of the general model and any attribution rule, there are parameter values
in our model that give the same equilibrium behavior and the same conversion rate. In
other words, we don’t lose much with the simplifications and at the same time, we make the
problem more tractable.

A.2.1 The General Model

Every consumer who enters the funnel is exposed to an awareness ad with probability r1.
If a consumer does not see an awareness ad, then the probability that he will move to the
next stage in the funnel is b1 (baseline). If a consumer is exposed to an awareness ad, but
he was not going to consider the product without the ad, then he moves to the next stage
with probability e1. We assume that r1 and b1 are fixed, while e1 is a decision variable for
the first publisher (effort).

The reason we assume that r1 is fixed is because this can be something pre-determined
and it is also easily measured. What is not observable by a firm is the effort the publisher
puts in showing ads. The effort will affect how effective the ads will be, e.g. it will show how
good targeting the publisher does. Higher effort comes with a cost for the publisher given
by the convex function c1e

2
1.

Summarizing the above, there are eight types of consumers as shown in the following
table.

Exposed to ad Not exposed to ad

Not in the baseline
(1− b1)r1e1

(1− b1)r1(1− e1)

0

(1− b1)(1− r1)

In the baseline
b1r1

0

b1(1− r1)

0

In each cell the upper part is the probability that the consumer will move to the con-
sideration stage (second stage in the funnel), while the lower part is the probability that he
will leave from the system (exit the funnel).

As we can see, the fraction of people who move from the first stage to the second without
seeing an ad is

b1(1− r1),
while the fraction of people who move from the first stage to the second after seeing an ad is

b1r1 + (1− b1)r1e1.
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Similarly, every consumer who enters the consideration stage in the funnel is exposed
to a consideration ad with probability r2. If a consumer in the second stage does not see
a consideration ad, then the probability that he will purchase the product is b2 (baseline
probability). If a consumer is exposed to a consideration ad, but he was not going to
purchase the product without the ad, then he purchases with probability e2. We assume
that r2 and b2 are fixed, while e2 is a decision variable for the second publisher (effort). The
cost for the effort e2 is given by the convex function c2e

2
2

The fraction of people who move from the second stage to the purchase without seeing
an ad is

b2(1− r2),
while the fraction of people moving from the second stage to the purchase after seeing an ad
is

b2r2 + (1− b2)r2e2.

Figure 20: General model.

The firm can see all the consumers who purchased the product in its website and only
them. It can also see, for each consumer who purchased, which ads they were exposed to
prior to the purchase.

In other words, the firm can observe that a fraction b1(1− r1)b2(1− r2) of consumers will
purchase the product without seeing any ad, a fraction (b1r1 + (1 − b1)r1e1)b2(1 − r2) will
purchase after seeing an ad only in the first stage, a fraction b1(1−r1)(b2r2 +(1−b2)r2e2) will
purchase after seeing an ad only in the second stage, and a fraction (b1r1+(1−b1)r1e1)(b2r2+
(1− b2)r2e2) will purchase after seeing ads in both stages. So the firm can determine these
four quantities even though it doesn’t know the individual efforts e1, e2 or the baselines b1,
b2.
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A.2.2 Transition from the general model to our model

To simplify the notation and make the analysis a bit easier, we make the following changes
to the general model:

• We define the constant q0 = b1(1 − r1), which we will call baseline probability (even
though the actual baseline is b1). This is the probability that a consumer in the first
stage will move to the second without seeing any ad.

• We define the decision variable a = b1r1 + (1− b1)r1e1. This is the probability that a
consumer in the first stage will see an ad and then move to the second stage. So now
we’ll assume that the first publisher will have to decide a instead of deciding e1. The
cost of e1 was c1e

2
1, which makes the cost of a something of the form ξ(a − ψ)2, for

constants ξ, ψ. This means that the first publisher will choose an a such that a ≥ ψ.
We will simplify this cost further to wa2 for some constant w. This is without loss
of generality because we can always approximate the cost of the original model by
adjusting w, and make sure that a ≥ ψ in equilibrium. Below we prove this claim
formally.

• Similarly, we define the constant p0 = b2(1 − r2); the baseline probability for the
transition from the consideration stage to purchase.

• Finally, we define the decision variable c = b2r2 + (1− b2)r2e2 for the second publisher
with an associated cost vc2.

Figure 21: Simplified model.
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In this version of the model, the firm can determine the quantities q0p0, ap0, q0c, and ac,
even though it doesn’t know the individual values of q0, p0, a, and c.

Claim 1. The two models are equivalent.

Proof. We will prove that for any equilibrium (e∗1, e∗2) in the general model, there are w, v
such that there is an equilibrium (a∗, c∗) in the simplified model that satisfies a∗ = b1r1 +
(1− b1)r1e

∗
1 and c∗ = b2r2 + (1− b2)r2e

∗
2.

We fix the values of b1, b2, r1, r2, c1, c2, and let p1(e1, e2) and p2(e1, e2) be the payment
functions in the general model for the first and the second publisher respectively. Let (e∗1, e∗2)
be an equilibrium of the general model under these payment functions.

We define q0 = b1(1− r1) and p0 = b2(1− r2). We also define the functions g(e1) = b1r1 +
(1− b1)r1e1 and h(e2) = b2r2 + (1− b2)r2e2, and let a′ = g(e∗1) and c′ = h(e∗2). The payment
functions in the simplified model will then be p1(g−1(a), h−1(c)) and p2(g−1(a), h−1(c)) for
the first and the second publisher respectively. We set

w = ∂p1(g−1(a), h−1(c′))
∂a

∣∣∣∣∣
a=a′
· 1

2a′

and
v = ∂p2(g−1(a′), h−1(c))

∂c

∣∣∣∣∣
c=c′
· 1

2c′ .

For these w and v, it holds that

∂(p1(g−1(a), h−1(c′))− wa2)
∂a

∣∣∣∣∣
a=a′

= 0

and
∂(p2(g−1(a′), h−1(c))− vc2)

∂c

∣∣∣∣∣
c=c′

= 0.

Notice that p1(g−1(a), h−1(c′))−wa2 is the utility of the first publisher and p2(g−1(a′), h−1(c))−
vc2 is the utility of the second publisher in the simplified model. In other words, (a′, c′) is
an equilibrium in the simplified model.

Example 1. Let’s consider a 1
2 -contract and let b1 = 1

3 , b2 = 1
4 , r1 = 1

5 , r2 = 1
6 , c1 = 2, c2 = 3.

The equilibrium in the general model is (e∗1, e∗2) = (0.00765193, 0.00626063). For w = 1.69573
and v = 3.53964, we get the equilibrium (a∗, c∗) = (0.0676869, 0.0424492) in the simplified
model, and it holds that a∗ = b1r1 + (1− b1)r1e

∗
1 and c∗ = b2r2 + (1− b2)r2e

∗
2.

A.3 Definition of Shapley Value
Let N be a set of players and let v : 2N → R be a function such that for every subset S ⊆ N
of players, v(S) gives the total payoff the members of S will get by working together. For a
pair (v,N), an attribution rule is a function φi(v) that gives the payoff of player i.

Axiom 1. Symmetry: If two players are equivalent, then they should have the same payoff.
Two players i, j are equivalent if their contribution to every subset of other players is the
same, or mathematically if v(S ∪ {i}) = v(S ∪ {j}) for every S ⊆ N \ {i, j}.
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Axiom 2. Null player : The payoff of a null player should be 0. A player i is called null if he
doesn’t contribute anything to any subset of other players, or mathematically if v(S∪{i}) =
v(S) for every S ⊆ N \ {i}.

Axiom 3. Additivity: The sum of payoffs that a player gets for two different games should be
equal to the payoff he gets if we consider the two games as one big game. Or mathematically,
φi(v + w) = φi(v) + φi(w) for every player i ∈ N and any two functions v, w : 2N → R.

Axiom 4. Efficiency: The total payoff is distributed among all the players. Or mathemat-
ically, v(N) = ∑

i∈N φi(v).

Shapley (1953) proved that there is a unique rule that satisfies these four axioms. We
call this rule the Shapley Value, and it is given by the following formula

φi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!
n! (v(S ∪ {i})− v(S)).
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