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Abstract

In online advertising auctions, advertisers bid on ad impressions by using consumer data to

target users effectively. However, disparities in data access and types among advertisers create

information asymmetries that influence auction outcomes and publishers’ revenues. This paper

studies the impact of such asymmetries by developing a theoretical model that incorporates three

key elements: (1) differentiation between types of consumer data—recognizing that data varies

by source and characteristics; (2) information asymmetry among advertisers—acknowledging

that not all advertisers have equal access to all consumer data; and (3) possible correlations

in advertisers’ valuations—understanding that certain data can affect advertisers’ valuations in

correlated ways.

Our findings reveal that under specific conditions—when advertisers’ valuations are posi-

tively correlated based on certain consumer data and when information asymmetry exists among

them—publishers can improve both their revenue and the auction’s conversion rates by limiting

data access and disabling microtargeting. Additionally, we show that when advertisers’ valua-

tions are independent, information asymmetry can be advantageous for publishers, suggesting

that selectively allowing microtargeting can be beneficial. Interestingly, both informed and un-

informed advertisers may, in some cases, gain when their competitors acquire more information.
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1 Introduction

Online advertising is one of the most important revenue generation mechanisms for publishers and

a vital channel for advertisers seeking to reach potential consumers. Central to the success of

online advertising is the ability to target advertisements to users based on rich consumer data.

This targeting is mainly done through real-time bidding auctions, where advertisers bid for ad

impressions by using available information about the user behind each impression. Improvements

in data collection technologies have allowed advertisers to gather large amounts of consumer data,

allowing for highly personalized advertising experiences. However, this field is characterized by

significant heterogeneity in the types of data available and asymmetries in data access among

advertisers, which importantly affect market outcomes.

Consumer data in online advertising is complex, made up of various types such as behavioral

data—capturing a user’s past online activities, preferences, and purchasing history—and contextual

data—relating to the content being viewed or the device being used. These data types originate

from different sources, including first-party data collected directly by the publisher, third-party

data aggregated by data brokers, and proprietary data held by individual advertisers. Each type

of data offers distinct insights and has unique characteristics that influence its utility in targeting

and valuation.

Despite the apparent wealth of data, not all advertisers have equal access to all consumer infor-

mation. Large advertisers or those integrated with major ad exchanges may have advanced tools

and special access to detailed user data, enabling them to engage in microtargeting. In contrast,

smaller advertisers or new entrants might rely solely on publicly available or basic contextual data.

This difference creates an information asymmetry in the advertising auction, where informed adver-

tisers can adjust their bids more effectively than their less-informed counterparts. Such asymmetry

can lead to inefficiencies in the auction outcomes, affecting both the competitiveness of the bidding

process and the overall welfare of the market participants.

From the publisher’s perspective, the control over data sharing presents strategic choices with

significant implications. Publishers must decide the extent to which they share their proprietary

data with advertisers. By enabling microtargeting through the sharing of detailed user data, pub-

lishers might enhance the value of their ad impressions, potentially increasing revenue from adver-
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tisers willing to pay premiums for precise targeting. However, excessive sharing of data can also

widen asymmetries and might lead to reduced competition among advertisers, ultimately harming

the publisher’s revenue in the long run. Conversely, by limiting data access—such as by disabling

third-party cookies or restricting data sharing—publishers might create a more level playing field

among advertisers, which could enhance competition and lead to different revenue dynamics.

Moreover, the impact of consumer data on advertisers’ valuations is not uniform and can be

correlated across advertisers in complex ways. For instance, information indicating a user’s high

income level may simultaneously increase the valuations of luxury goods advertisers but might be

less relevant to discount retailers. Similarly, a user’s intent to purchase a car is highly valuable to

car advertisers but holds little significance for unrelated industries. These correlations in valua-

tions based on consumer data influence how advertisers perceive the value of an impression and,

consequently, how they bid in auctions.

Understanding the interaction between the types of consumer data, the asymmetry in data

access among advertisers, and the correlations in valuations is important for analyzing online ad-

vertising auctions. Despite the practical significance, there is a lack of theoretical frameworks that

integrate all these elements to evaluate their collective impact on market outcomes. Addressing

this gap is essential for publishers aiming to form data-sharing strategies that optimize their ob-

jectives, whether it be maximizing revenue or increasing the conversion rates of auctions, and for

policymakers concerned with promoting fair competition in digital markets.

This paper investigates the effects of information asymmetry arising from differential access

to diverse types of consumer data in online advertising auctions. We develop and study a model

that incorporates three key elements: (1) differentiation between types of data, (2) information

asymmetry between advertisers, and (3) correlation among advertisers’ valuations.

Differentiation between types of data. Recognizing that consumer data is heterogeneous,

we model multiple dimensions of data—such as behavioral and contextual data—each contributing

differently to advertisers’ valuations. This approach differs from traditional models that consider

consumer data as a single homogeneous variable, allowing for a nuanced analysis of how distinct

data types influence auction outcomes.
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Information asymmetry between advertisers. Our model incorporates scenarios where ad-

vertisers have varying levels of access to consumer data. By distinguishing between informed

advertisers, who possess comprehensive data, and uninformed advertisers, with limited data access,

we analyze how this asymmetry affects bidding strategies and market efficiency.

Correlation among advertisers’ valuations. We consider the possibility that certain con-

sumer data impacts multiple advertisers’ valuations in correlated ways. This aspect acknowledges

that some data attributes may simultaneously increase the attractiveness of an impression to several

advertisers, introducing complex dynamics into the bidding process.

Research Questions

The value of microtargeting in online advertising has been extensively debated within both the

advertising industry and the academic literature. Proponents argue that microtargeting improves

the precision of advertising campaigns, allowing advertisers to reach consumers who are most likely

to be interested in their products or services. This precision is believed to increase the value of

ad impressions, thereby increasing publishers’ revenues. For example, Google researchers observed

a 52% reduction in publishers’ revenue when third-party cookies were disabled, underscoring the

importance of microtargeting (Ravichandran and Korula, 2019).

Critics, however, argue that microtargeting can lead to negative market outcomes for publishers.

One critique centers on the role of intermediaries like ad exchanges, which often charge a significant

portion of the resulting revenue for their microtargeting services (Hsiao, 2020). Without the need

for microtargeting, publishers could potentially reduce costs by eliminating these intermediaries.

A second critique is that enhanced information among advertisers can lead to reduced competition

and lower prices due to diminished market thickness (Levin and Milgrom, 2010). By withhold-

ing information and limiting microtargeting, publishers might strengthen competition and achieve

higher revenues.

While these arguments focus on the revenue aspect, another critical metric for evaluating the

effectiveness of advertising is the conversion rate. The prevailing view is that microtargeting should

improve conversion rates by serving more relevant ads to consumers. However, there is anecdotal

evidence suggesting this may not always be the case. For example, in an experiment with various
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advertisers, the Dutch public broadcaster NPO found that conversion rates did not decline and

sometimes even improved when ads were targeted using only partial data (Snelders et al., 2020).

And for this to happen, revenue does not have to be sacrificed since NPO also saw a significant

increase in advertising revenue after discontinuing the use of tracking cookies (Edelman, 2020).

Similarly, The New York Times experienced analogous results when they stopped offering behavioral

targeting on their pages (Davies, 2019).

The divergence in the different perspectives highlights several key research questions. Under

what conditions does microtargeting improve or diminish publisher revenues and con-

version rates? While microtargeting can increase the value of certain impressions, its overall

impact is not clearly understood, especially when considering the heterogeneity of data types and

advertisers’ access to information. How does information asymmetry among advertisers

affect auction outcomes? The role of asymmetric information in shaping bidding strategies and

market efficiency requires further examination, particularly in contexts where data access varies

significantly among advertisers. Lastly, what are the implications of correlations in adver-

tisers’ valuations based on consumer data? Understanding how different types of consumer

data influence correlated valuations among advertisers is essential for assessing the impact of data-

sharing policies on auction dynamics.

Contributions

This paper addresses these questions by developing a theoretical model that integrates the differ-

entiation of consumer data types, information asymmetry among advertisers, and the correlation

of advertisers’ valuations. Our contributions are threefold:

� We establish conditions under which limiting microtargeting can simultaneously

improve publisher revenue and auction conversion rates. Specifically, we demonstrate

that when there is a positive correlation among advertisers’ valuations linked to certain con-

sumer data and when not all advertisers have access to this data, disabling microtargeting can

lead to more competitive bidding.
1
This increased competition enhances both the publisher’s

1
This result is in contrast to the linkage principle (Milgrom and Weber, 1982) that suggests that less-informed

advertisers will underbid in the auction for the impression to avoid a phenomenon similar to the winner’s curse
(McAfee and McMillan, 1987), and therefore the publisher should commit to reveal all available information to
increase the bids and the revenue. Our result differs due to the data asymmetry that exists among advertisers.
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revenue and the efficiency of the auction process.

� We analyze scenarios where information asymmetry benefits the publisher. Our

findings reveal that in some cases, allowing only certain advertisers to engage in microtargeting

(instead of everyone or no one) can result in higher revenues for the publisher.

� We explore the counterintuitive outcomes where advertisers may benefit from

their competitors gaining more information. In situations where advertisers’ valuations

are independent, an increase in competitors’ information can benefit all advertisers through

improved allocation efficiency.

By addressing these aspects, our study offers new insights into the strategic role of consumer data

in online advertising auctions. We provide a nuanced understanding of how publishers can decide

on data-sharing policies to optimize revenue and market outcomes. Additionally, our analysis

contributes to the broader discussion on data privacy and competition policy, highlighting the

complex interactions between data access, market efficiency, and welfare.

2 Related Literature

This research contributes to the growing literature on targeted advertising and online advertising

auctions. Below, we discuss in more detail some related theory papers on targeted advertising.

From the advertisers’ perspective, improving firms’ ability to target consumers typically im-

proves revenues, but in some cases it can have negative effects. For example, Chen et al. (2001)

study the effects of imperfect targetability on prices for different segments of consumers. Interest-

ingly, they found that improving the targetability of a firm can sometimes benefit both the firm

and its competitor. Iyer et al. (2005) describe a model of competing firms who can target different

segments of consumers with advertising and show that targeted advertising will improve the firms’

profits and, moreover, it can sometimes be more valuable than targeted pricing. Bergemann and

Bonatti (2011) show that better targeting causes an increase in the number of consumer-product

matches, but prices of ads change non-monotonically in the targeting capacity. Brahim et al. (2011)

study a model with two firms competing in prices and targeted advertising. They show that firms’

profits can be lower with targeted relative to random advertising. Esteves and Resende (2016)
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study how targeted advertising can be used by competing firms to price discriminate different seg-

ments of consumers. Zhang and Katona (2012) study how contextual advertising affects product

market competition. Johnson (2013) considers targeted advertising in combination with advertis-

ing avoidance technology. He shows that targeting will increase firms’ profits, but it can make

consumers worse off. Hummel and McAfee (2016) study how the number of bidders in an auction

affects a seller’s revenue under two different settings (bundling vs. targeting). A difference in our

model is that bidders’ valuations need not be independent. Despotakis and Yu (2022) study a

multidimensional targeting model and show that sometimes the use of multiple dimensions of data

to target consumers can have negative effects for a firm.

De Corniere and De Nijs (2016) show that when a platform chooses to reveal the information it

has about a consumer to advertisers, the advertisers will set higher prices in anticipation of a better

matching. This will benefit the advertisers and the platform. Our setting differs in that revealing

information can actually worsen the matching between the advertisers and the consumer, resulting

in a lower social welfare. This is because in addition to the full disclosure or non-disclosure of

information, we also consider the case where not all advertisers have access to the same information

about the consumer, and this asymmetry plays an important role in our model. Shen and Miguel

Villas-Boas (2018) study advertising based on the past purchase behavior of consumers and examine

how it affects product prices for a monopolist. Rafieian and Yoganarasimhan (2021) show that

the revenues of ad-networks can increase when they allow users to preserve their privacy. This

is because more precise targeting can thin out the market and soften competition, in a similar

fashion to Levin and Milgrom (2010). However, when this happens, the targeting becomes less

efficient. In our model, we can replicate this effect for the case of independent valuations between

the advertisers, but for the case of dependent valuations, we see that revenue and efficiency can

increase or decrease together.

Ada et al. (2022) study the impact of providing ad context information in ad exchanges and find

that in most cases ad exchanges can boost publishers’ revenues by sharing context information with

ad buyers. (Shin and Shin, 2022) demonstrate that irrelevant advertising can stem from strategic

decisions within the ad agency-advertiser relationship, rather than simply technological imperfec-

tions. The study also explores how contractual restrictions can lead to inefficiencies in ad delivery,

and suggests that the prevalence of irrelevant ads may decrease, but not disappear, as the number
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of impressions available in the market increases. Choi and Sayedi (2023b) investigate the effects

of private exchanges on the display advertising market, finding that while private exchanges offer

higher quality impressions compared to open exchanges, they can also create information asymme-

try among advertisers, which can hurt publisher’s revenue. Choi and Sayedi (2023a) examine the

effects of ad agencies on the online advertising market, revealing that publishers face a trade-off

when deciding whether to withhold targeting information from agencies, which can either mitigate

“bid rotation” and attract direct advertisers or reduce the efficiency of allocation for agency-using

advertisers.

This paper contributes to the targeted advertising literature by examining the role of informa-

tion asymmetry in targeted advertising. In the presence of this asymmetry, we show that both

publisher revenue and conversion rates can increase simultaneously when the publisher disables mi-

crotargeting, which is not the case for symmetric advertisers. It also contributes to the literature on

online advertising auctions. In our model we examine the interaction between different conditions

on advertisers’ valuations (correlated and independent), which consist of two different components

(contextual and behavioral), and different information settings (where different advertisers have

access to different information), providing a comprehensive look at how information asymmetries

can affect the equilibrium market outcomes.

3 Model

Two
2
advertisers are competing for a single ad impression, provided by a publisher.

Data Differentiation. Advertiser i’s valuation, vi, for the impression consists of two compo-

nents:

vi � κ � bi � �1 � κ� � ci,
where bi, ci " �0, 1� are random variables matching two different types of consumer data to each

advertiser. For example, we can interpret ci as a function from the consumer’s contextual data to

a matching value in �0, 1� for advertiser i. Similarly, we can interpret bi as a function from the

2
We start with two advertisers for simplicity, but the results hold for any number of advertisers. Because two

advertisers are sufficient to showcase some of the core insights and intuitions, we start with two advertisers in Section 4.
In Sections 5 and 6, we generalize the model and results to any number of advertisers (n ' 2).
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consumer’s behavioral data to a matching value in �0, 1� for advertiser i. The parameter κ " �0, 1� is
a weight parameter that allows for different contributions of the two types of data to the valuations

(i.e., the larger κ is, the more important bi is in comparison to ci in a particular setting).

The valuation vi " �0, 1� is the amount of money advertiser i is willing to pay to display an ad

to this specific consumer with matching values bi and ci. If we assume that the advertiser receives

a normalized profit of 1 if they manage to convert the consumer, then we can also think of vi as

the probability that an impression for advertiser i will result in a conversion. As we will see next,

advertiser i does not necessarily know their vi, because they might not have access to all the data

(but they have some expectations about it).

For ease of interpretability, throughout the paper, we will often refer to bi as the behavioral

variable (corresponding to behavioral data) and to ci as the contextual variable (corresponding to

contextual data). However, the model itself is agnostic to the specific types of data these variables

correspond to, so different interpretations are valid (i.e., demographic data can be included, or

behavioral and contextual data can be switched, etc.). The important thing is the properties these

types of data satisfy, which we describe next.

Asymmetry of Information. So far, bi and ci are interchangeable. What differentiates them

in the model is that we assume that ci is always known by advertiser i, but bi is not necessarily

known.
3
More specifically, we consider three different information settings with regards to bi:

� Full Information (FI): All advertisers know their bi.

� Information Asymmetry (IA): Advertiser 1 knows b1, while Advertiser 2 does not know

b2. We refer to Advertiser 1 as the exchange advertiser, while we refer to Advertiser 2 as the

direct advertiser.
4

� Contextual Targeting (CT): None of the advertisers know their bi.

Based on the data that is available to each advertiser, they form an expectation of their vi, that

they use for their decisions. When an advertiser knows and uses both bi and ci, we refer to this as

3
This assumption also fits with the interpretation that ci corresponds to contextual data and bi to behavioral

data. Usually contextual information is easily accessible, but behavioral information for a consumer is not always
available.

4
An interpretation for the data asymmetry is that Advertiser 1 participates through an ad exchange that gives

them access to the extra information, while Advertiser 2 does not use an intermediary ad exchange, hence the names.
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microtargeting. When only ci is known, we refer to this as contextual targeting.

Advertiser Correlation. The random variables bi of different advertisers can potentially be

correlated with each other. We consider the following two extreme cases for the bi’s:

� Common-value case (CV): b1 � b2 �� b, where b is drawn from a distribution with CDF

F .

� Independent-values case (IV): b1, b2 are i.i.d. draws from a distribution with CDF F .

For parsimony and analytical tractability, we model the distribution F as a Bernoulli distribution

in r0, 1x, with Pr�bi � 1� � p for some probability p " �0, 1�.
We can also consider different cases regarding the correlation of the variables ci. However, since

ci is always known by advertisers, the common-value case is not that interesting, so we omit it here

for brevity, and we consider the following case for the ci’s:
5

� The random variables ci are i.i.d. draws from a distribution with CDF G.

We model the distribution G as a uniform distribution in �0, 1�.6

The Auction. The impression is sold using a second-price auction run by the publisher. The

advertisers bid based on the expectations they have formed about their vi, and the advertiser with

the highest bid wins and pays the second-highest bid to the publisher.
7

Notation. For each behavioral case σ " rCV, IVx (common-value, independent-values) and each

information setting τ " rFI, IA,CTx we denote by W
σ
τ and V

σ
τ the publisher’s expected revenue

and the expected conversion rate, respectively. Similarly, we denote by E
σ
τ and D

σ
τ the exchange

5
For completeness, we consider the common-value case for ci’s separately in Appendix C.

6
This is again for simplicity. In Sections 5 and 6, we consider an arbitrary distribution G instead of a uniform

and show that the results remain robust.
7
In practice, more elaborate selling mechanisms are possible. For example, an ad exchange can run its own auction

among its advertisers and submit the clearing price to the publisher; the publisher can then run an additional auction
with all the received bids to determine the winner. Each auction can also be of different formats, e.g. second-price
or first-price. Here, we abstract away from the complications of the selling mechanism itself by using a standard
second-price auction for selling the impression. Even though alternative mechanisms can complicate the analysis
significantly, the intuition for the results described in the paper still holds. To demonstrate this, in Lemma 4 we show
that the result that the conversion rate can increase by disabling microtargeting, holds for a wide variety of selling
mechanisms, including e.g. a single or multiple first-price auctions. For completeness, in Appendix B.3 we also show
that for first-price auctions the publisher’s revenue can also increase by disabling microtargeting (Proposition 12).
For other selling mechanisms, similar intuition applies.
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advertiser’s and the direct advertiser’s expected payoffs, respectively. Table 1 summarizes all the

notation described above. Figure 13 summarizes the main results.

The rest of the paper is structured as follows. In Section 4, we present the main results and

insights for the main model described above. Then, in Sections 5 and 6 we show the robustness

of our results in more general settings that include a larger number of advertisers and arbitrary

distributions G. In Section 5 we do it analytically for the results where a proof is feasible despite

the lack of a closed-form bidding function.
8

In Section 6 we start by showing the existence of a

pure symmetric equilibrium for the general model;
9
we then numerically approximate the bidding

function for some general examples and show the robustness of the results for the general case. All

proofs are relegated to Appendices A.1 and B.1 and a summary of all key formulas can be found in

Appendix B.2. Lastly, in Appendix B.3 we analyze a variation of the model, where the impression

is sold with a first-price auction instead of a second-price auction, and we show the robustness of

the main results.

4 Analysis and Main Insights

In this section, we start with the main model with two advertisers. In subsection 4.1 we consider

the common-value case (CV) and in subsection 4.2 we consider the independent-values case (IV). In

subsection 4.3 we compare and discuss the differences between the common-value and independent-

values cases in terms of publisher’s revenue, conversion rates, and advertisers’ payoffs.

4.1 Common-value case

Under the common-value case in the CT and FI settings, both advertisers will have the same infor-

mation, therefore, in the second-price auction they will truthfully bid their valuation (in FI) or their

expected valuation (in CT, where they do not know the actual valuation) (see e.g., Krishna, 2009).

However, in the IA setting the exchange advertiser is more informed than the direct advertiser. As

a consequence of this asymmetry, the exchange advertiser will still bid their true valuation, but the

8
More specifically, the bidding function of the direct advertisers is the solution to a differential equation that does

not always have a closed-form solution (see equation 4 and the proof of Lemma 3).
9
More specifically, we show that there is a pure symmetric equilibrium bidding strategy for the direct advertisers

under the common-value IA setting.
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Information settings

FI Full Information. The publisher provides the behavioral data to all the adver-
tisers.

IA Microtargeting with Information Asymmetry. Only the exchange advertisers
have access to behavioral data.

CT Contextual Targeting. No advertiser has access to behavioral data.

Behavioral-value settings

CV Common Value. The behavioral value is the same for all the advertisers.
IV Independent Values. The behavioral values are independent between advertis-

ers.

Parameters

κ Behavioral Weight. The importance of behavioral data compared to contextual
data on the advertisers’ valuations.

p Behavioral Probability. The probability that the behavioral value b of a ran-
dom consumer is high for an advertiser.

Market Metrics

V
σ
τ Expected conversion rate under the behavioral-value setting σ " rCV, IVx and

the information setting τ " rFI, IA,CTx.
W

σ
τ Publisher’s expected revenue under the behavioral-value setting σ " rCV, IVx

and the information setting τ " rFI, IA,CTx.
E

σ
τ Exchange advertiser’s expected payoff under the behavioral-value setting σ "rCV, IVx and the information setting τ " rFI, IA,CTx.

D
σ
τ Direct advertiser’s expected payoff under the behavioral-value setting σ "rCV, IVx and the information setting τ " rFI, IA,CTx.

Others

v � κb��1�κ�c Advertiser’s valuation for behavioral value b and contextual value c. It is also
used as a proxy for conversion rate.

β�c� Equilibrium bidding function of a direct advertiser under the common-value
IA setting, where the direct advertiser does not know b but they know c.

Generalizations

Number of advertisers

n1 Number of exchange advertisers. They have access to behavioral data, except
in the contextual-targeting information setting (CT).

n2 Number of direct advertisers. They only have access to contextual data, except
in the full-information setting (FI).

n � n1 � n2 Total number of advertisers.

Distributions

G Contextual Distribution. The CDF of the distribution of the contextual value
of a random consumer for an advertiser.

Table 1: Summary of Notation
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direct advertiser might not always do that. We start off with Lemma 1 on the bidding function of

the direct advertiser.

Lemma 1 (Advertisers’ bidding behavior). Under the common-value IA setting, the exchange

advertiser bids their true valuation, while given contextual value c " �0, 1� the direct advertiser’s

bidding function is

β�c� ��
~��������������������

�1 � κ�c, if 0 & c $ min u Ó
1�pÓ

1�p�
Ó
p
,
Ó
1�pκ

1�κ
{,

κp � �1 � κ�c, if min u Ó
1�pÓ

1�p�
Ó
p
,
Ó
1�pκ

1�κ
{ & c $ max u Ó

1�pÓ
1�p�

Ó
p
, 1 �

Ó
pκ

1�κ
{,

κ � �1 � κ�c, if max u Ó
1�pÓ

1�p�
Ó
p
, 1 �

Ó
pκ

1�κ
{ & c & 1.

(1)

The intuition behind Lemma 1 is the following. If the contextual value c of the direct advertiser

is relatively low, they bid as if the common behavioral value b is 0. This is because if they assume

some other value b � x % 0, they risk overpaying for the impression in the case where b � 0 and

�1�κ��c $ �1�κ��c¬ $ κ�x��1�κ��c (where c¬ is the contextual value of the exchange advertiser),
where they end up with a negative payoff of �1� κ� � �c� c

¬�. When c $ min u Ó
1�pÓ

1�p�
Ó
p
,
Ó
1�pκ

1�κ
{, this

risk is too high to take. However, when the contextual value c is high �c ' max u Ó
1�pÓ

1�p�
Ó
p
, 1 �

Ó
pκ

1�κ
{	,

it is very likely that c % c
¬
, therefore they are not afraid to bid as if b � 1, because they have a

higher incentive to win and avoid losing impressions with good behavioral values. For medium

values of c, both the risks of overpaying for a bad impression and losing a good impression are too

high to make any assumption about b, therefore the advertiser simply bids their expected valuation

(note that the expected value of b is p).

Note that as κ increases, i.e. as the behavioral data becomes more important, the middle interval

of c where the direct advertiser bids their expected valuation shrinks, and for κ ' 1©2 it disappears,

i.e. the advertiser either underbids or overbids depending on c (see also Figure 1 where the bidding

function is shown for different values of κ). Since the role of information asymmetry is more

important for larger values of κ and it is where the more interesting results occur, for simplicity

for some of the analysis, we focus on the case where κ ' 1©2, unless otherwise noted.

Note also that when the value of p is low, the region of c where the underbidding occurs is wider

compared to the overbidding region, but the amount of underbidding (κp) is smaller compared to

the amount of overbidding (κ�1 � p�). On the other hand, when p is high, overbidding is more
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κ=0.3κ=0.5

κ=0.9

0.0 0.2 0.4 0.6 0.8 1.0
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β(c)

Figure 1: Bidding function of the direct advertiser for different values of κ (solid line for κ � 0.3,
dashed line for κ � 0.5, and dotted line for κ � 0.9), n1 � n2 � 1, p � 1©2, and G�x� � x.
Notice that for large contextual values c, as κ increases there is more overbidding, while for small
contextual values c, as κ increases there is more underbidding.

common but the amount of overbidding is lower. This is illustrated in Figure 2.

In Lemma 2 of Section 5 we show a generalization of Lemma 1 for any n1 ' 1, any distribution

G, p " �0, 1�, and κ ' 1©2. Lemma 3 in Section 6 is a further generalization for the more general

case with n2 ' 1 (where the bidding function does not always have a closed-form expression). The

same intuition as for Lemma 1 applies to Lemma 2 and Lemma 3 as well.

Bid β(c)

Expected valuation

0.2 0.4 0.6 0.8 1.0
c

0.2

0.4

0.6

0.8

1.0

p = 1/5

(a) p � 1©5.

Bid β(c)

Expected valuation

0.2 0.4 0.6 0.8 1.0
c

0.2

0.4

0.6

0.8

1.0

p = 4/5

(b) p � 4©5.

Figure 2: Bidding function of the direct advertiser (solid line) compared to their expected valuation
(dashed line), for different values of p, n1 � n2 � 1, κ � 1©2, and G�x� � x. Notice that for small
values of p (left) the region of overbidding is smaller than the region of underbidding, but the
amount of overbidding (κ�1� p�) is larger than the amount of underbidding (κp). For large values
of p (right) the opposite happens.

The bidding function of Lemma 1 sometimes results in an inefficient market under the IA

information setting. More specifically, both the underbidding and the overbidding can result in
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lower conversion rate compared to the CT setting (where every advertiser bids their expected

valuation). This is illustrated in Example 1.

Example 1 (Inefficiency of non-truthful bidding). Let κ � p � 1©2. Then the direct advertiser

bids c©2 if c $ 1©2 and �1 � c�©2 if c ' 1©2, where c is their contextual value. The following

two examples illustrate the inefficiency caused by the non-truthful bidding of the direct advertiser.

They show that both underbidding and overbidding can result in lower conversion rates.

� Inefficiency of underbidding

(IA setting) Suppose that the common behavioral value is high, i.e. b � 1, the exchange

advertiser has contextual value c1 � 1©6, and the direct advertiser has contextual value

c2 � 1©3. The actual valuations of the two advertisers are v1 � �1 � c1�©2 � 7©12 for the

exchange advertiser and v2 � �1 � c2�©2 � 8©12 for the direct advertiser. The exchange

advertiser bids their actual valuation β1 � 7©12, but the direct advertiser underbids, i.e.

β2 � c2©2 � 2©12. As a result, the direct advertiser loses the auction even though they have

a higher valuation. Thus, the conversion rate ends up being lower than what it could be in a

more efficient auction.

(CT setting) If none of the advertisers knew the behavioral value b, then both advertisers

would bid their expected valuations, i.e. β1 � 1©4 � c1©2 � 4©12 and β2 � 1©4 � c2©2 � 5©12.
Thus, the advertiser with the highest valuation would win, leading to a higher conversion

rate.

� Inefficiency of overbidding

(IA setting) Suppose that the common behavioral value is low, i.e. b � 0, the exchange

advertiser has contextual value c1 � 5©6, and the direct advertiser has contextual value

c2 � 2©3. The actual valuations of the two advertisers are v1 � c1©2 � 5©12 for the exchange

advertiser and v2 � c2©2 � 4©12 for the direct advertiser. The exchange advertiser bids their

actual valuation β1 � 5©12, but the direct advertiser overbids, i.e. β2 � �1�c2�©2 � 10©12. As
a result, the direct advertiser wins the auction even though they have a lower valuation. Thus,

the conversion rate ends up being lower than what it could be in a more efficient auction.

(CT setting) If none of the advertisers knew the behavioral value b, then both advertisers

would bid their expected valuations, i.e. β1 � 1©4 � c1©2 � 8©12 and β2 � 1©4 � c2©2 � 7©12.
14



Thus, the advertiser with the highest valuation would win, leading to a higher conversion

rate.

As we can see in Example 1, there are cases where under the IA setting the advertiser with

the highest valuation does not win, either due to the underbidding or due to the overbidding of

the direct advertiser. In contrast, under the CT setting, the highest-valuation advertiser always

wins, because every bidder bids their expected valuation, and the winner is determined based on

the contextual values. This results in a higher conversion rate for the CT setting, as shown in

Proposition 1.

For the publisher’s revenue, things are less clear. On the one hand, the underbidding that occurs

under IA can hurt the publisher, but on the other hand, the overbidding can benefit the publisher

because it can increase the prices. Surprisingly, the opposite can happen too; underbidding can

sometimes increase publisher’s revenue, and overbidding can decrease it, as illustrated in Example 2.

Example 2 (The effects of non-truthful bidding on revenue). Let κ � 1©2 and p � 1©3. Then the

direct advertiser bids c©2 if c $ 2 �
Ó
2 and �1 � c�©2 if c ' 2 �

Ó
2, where c is their contextual

value. The following two examples illustrate that, counter-intuitively, underbidding can sometimes

increase publisher’s revenue, and overbidding can sometimes decrease it.

� Underbidding can increase publisher’s revenue

(IA setting) Suppose that the common behavioral value is high, i.e. b � 1, the exchange

advertiser has contextual value c1 � 1©12, and the direct advertiser has contextual value

c2 � 1©2. The actual valuations of the two advertisers are v1 � �1 � c1�©2 � 13©24 for the

exchange advertiser and v2 � �1 � c2�©2 � 18©24 for the direct advertiser. The exchange

advertiser bids their actual valuation β1 � 13©24, but the direct advertiser underbids, i.e.

β2 � c2©2 � 6©24. The exchange advertiser wins and pays β2, therefore, the publisher’s

revenue is 6©24.
(CT setting) If none of the advertisers knew the behavioral value b, then both advertisers

would bid their expected valuations, i.e. β1 � 1©6� c1©2 � 5©24 and β2 � 1©6� c2©2 � 10©24.
Then the direct advertiser would win and pay β1. Therefore, publisher’s revenue would be

5©24, which is lower than the revenue under the IA setting.
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� Overbidding can decrease publisher’s revenue

(IA setting) Suppose that the common behavioral value is low, i.e. b � 0, the exchange

advertiser has contextual value c1 � 5©6, and the direct advertiser has contextual value

c2 � 3©4. The actual valuations of the two advertisers are v1 � c1©2 � 10©24 for the exchange

advertiser and v2 � c2©2 � 9©24 for the direct advertiser. The exchange advertiser bids their

actual valuation β1 � 10©24, but the direct advertiser overbids, i.e. β2 � �1 � c2�©2 � 21©24.
The direct advertiser wins and pays β1, therefore, publisher’s revenue is 10©24.
(CT setting) If none of the advertisers knew the behavioral value b, then both advertisers

would bid their expected valuations, i.e. β1 � 1©6�c1©2 � 14©24 and β2 � 1©6�c2©2 � 13©24.
Then the exchange advertiser would win and pay β2. Therefore, publisher’s revenue would

be 13©24, which is higher than the revenue under the IA setting.

Despite valuation instances like those in Example 2, in Proposition 1 we show that the overall

publisher’s expected revenue is higher under the CT setting.

Proposition 1 (Common-value and information asymmetry). Under the common-value behavioral

setting, the publisher can improve both the conversion rate and the expected revenue if it hides

the behavioral information from all the advertisers. In other words, we have V
CV

IA & V
CV

CT and

W
CV

IA &W
CV

CT .

Proposition 1 shows that if the publisher has some useful information about a consumer but

cannot provide this information to all advertisers, it can achieve a higher conversion rate by hiding

the information from everyone rather than giving it only to some advertisers. As an added benefit,

the publisher can also simultaneously increase its revenue by hiding this information for all adver-

tisers. The main reason this happens is the inefficiency of the non-truthful bidding of the direct

advertiser under the IA setting, as illustrated in Example 1.

Given the result of Proposition 1, one may wonder if the same can happen when there is no

information asymmetry between the advertisers. In other words, if all advertisers have access to the

same information, is it still possible that less information can simultaneously increase the conversion

rate and the publisher’s revenue? In Proposition 2 we show that this cannot happen under the

common-value behavioral setting.
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Proposition 2 (Common-value and full information). Under the common-value behavioral setting,

both the conversion rate and the expected revenue remain unchanged when all advertisers have

access to the same information (i.e., when all advertisers have access to behavioral data or none

of the advertisers have access to behavioral data). In other words, it holds that V
CV

FI � V
CV

CT and

W
CV

FI �W
CV

CT .

The equality V
CV

FI � V
CV

CT is relatively easy to see, whereas the equality W
CV

FI � W
CV

CT is less

straightforward. Under the common-value setting, since all advertisers have the same behavioral

value, when all have the same information, the behavioral part of their bids is the same for everyone;

therefore, the winner of the auction is purely determined by their contextual values in both the FI

and the CT settings. As a result, the conversion rate remains unchanged.

For the revenue, when the common behavioral value is high, publisher’s revenue is higher under

the CT setting because every advertiser bids above their actual valuation. In contrast, when the

common behavioral value is low, the publisher’s revenue is lower under the CT setting because

every advertiser bids below their actual valuation. Due to the linearity of the expectation, the

average revenue remains the same in the two information settings.

Note that as we move from the FI to the IA and then to the CT information setting, the overall

information to the advertisers is reduced. As a result, the inequality W
CV

FI ' W
CV

IA agrees with the

linkage principle (Milgrom and Weber, 1982) which would suggest that revealing information is

better for the revenue, but the inequality W
CV

IA &W
CV

CT violates the principle which happens due to

the information asymmetry.
10

In this section, we have seen that under the common-value setting there is a non-monotonic

relationship between the amount of information available to the advertisers and the efficiency of

the auction; as we reduce the information, efficiency (i.e. the conversion rate) first goes down and

then goes up again. We have also seen that a similar effect occurs for the publisher’s revenue. In

Section 4.2 we show that this is no longer true when the behavioral values are independent.

10
For some other cases where the principle is violated for different reasons, see e.g. Perry and Reny (1999); Fang

and Parreiras (2003); Krishna (2009); Despotakis et al. (2017).
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4.2 Independent-values case

In contrast to the common-value case, when the behavioral values of advertisers are independent,

all advertisers will bid truthfully according to their (expected) valuation.

In the independent-values case, the intuitive result that less information to the advertisers

decreases the conversion rate now holds. This is still not true for every valuation instance, as

illustrated in Example 3, but it is true for the expected conversion rates, as shown in Proposition 3.

Example 3. Let κ � p � 1©2.
(IA setting) Suppose that the exchange advertiser has a behavioral value b1 � 1 and a contextual

value c1 � 3©8, and the direct advertiser has a behavioral value b2 � 1 and a contextual value

c2 � 5©8. The actual valuations of the two advertisers are v1 � �1� c1�©2 � 11©16 for the exchange

advertiser and v2 � �1 � c2�©2 � 13©16 for the direct advertiser. The exchange advertiser bids

their actual valuation β1 � 11©16, but the direct advertiser bids their expected valuation, i.e.

β2 � 1©4 � c2©2 � 9©16. As a result, the direct advertiser loses the auction even though they have

higher valuation.

(CT setting) If none of the advertisers knew their behavioral values bi, then both advertisers

would bid their expected valuations, i.e. β1 � 1©4� c1©2 � 7©16 and β2 � 1©4� c2©2 � 9©16. Thus,
the advertiser with the highest valuation would win, leading to a higher conversion rate than the

IA setting.

Despite valuation instances like those in Example 3, in Proposition 3 we show that the overall

expected conversion rate increases with more information, under the independent-values setting.

Proposition 3 (Independent-values, conversion rates). Under the independent-values behavioral

setting, the less information advertisers have overall, the lower the conversion rate is. More specif-

ically, V
IV

FI ' V
IV

IA ' V
IV

CT.

Proposition 3 shows that the dependence between the behavioral values of different advertisers

is an essential element for the result of Proposition 1, since for independent values it no longer

holds.

With respect to the publisher’s revenue, the result is less intuitive. Proposition 4 shows that as

we provide more information in general to advertisers, publisher revenue decreases.
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Proposition 4 (Independent-values, publisher’s revenues). Under the independent-values behav-

ioral setting, the less information advertisers have overall, the higher publisher’s revenue is. More

specifically, we have W
IV

FI &W
IV

IA &W
IV

CT.
11

The result of Proposition 4 is sensitive to the number of advertisers (in contrast to the previous

results that hold for arbitrary number of advertisers; see Section 5). What happens in general

is that, for a small number of advertisers, less information is better, but for a large number of

advertisers, more information is better. This is due to a version of the market-thinning effect

(Levin and Milgrom, 2010). When there are few advertisers in the market, as they become more

informed their values spread out, and there is less competition in the high valuations. But as

the number of advertisers becomes larger and the competition increases, more information should

improve publisher’s revenue. More specifically, when n1 � n2 � 1 (i.e. there is one advertiser of each

type) it holds that more information decreases revenue, but as n1 and n2 increase, at some point this

stops being true. The exact threshold for the number of advertisers where monotonicity changes

depends on the value of p, with a lower p increasing the threshold, the behavioral-value weight κ,

with higher κ increasing the threshold, and the contextual distribution G (see Proposition 9 and

Figure 7 for more details).
12

4.3 Comparison of the Behavioral-Value Settings and Advertisers’ Payoffs

Now that we have the results for the simple model with two advertisers, we can compare the two

behavioral-value settings (the common-value case and the independent-values cases) to each other

in terms of their consequences for the publisher’s revenue, conversion rates, and advertisers’ payoffs.

We start with the publisher’s revenue in Figure 3. In the two plots of Figure 3, we see the

revenue under the three different information settings as the behavioral probability p changes in

�0, 1�. In the common-value case in Figure 3(a), we can see that starting from the IA setting

and eliminating the information asymmetry by going towards FI or CT, the publisher’s revenue

increases. This is due to the underbidding and overbidding behavior that occurs in IA, as discussed

11
We want to highlight that this result holds for a low number of advertisers (e.g. two, like in the main model),

but unlike the other results it does not always generalize for more advertisers. In Section 5.2 we consider the general
case and discuss the details on this.

12
It is interesting to note that there are also cases where the expected revenue is non-monotonic with respect to

the total amount of information that is available to the advertisers. In other words, all six different orderings of W
IV
FI ,

W
IV
IA , and W

IV
CT are possible under different conditions (see Figure 8).
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in Section 4.1. In contrast to Figure 3(a), in the independent-values case in Figure 3(b) we observe

a monotonic change in revenue. As we add information to the market (moving from CT to IA and

then to FI), publisher’s revenue goes down, as described in Proposition 4.
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(a) Common-value case.
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(b) Independent-values case.

Figure 3: Publisher’s revenue under the different information settings for different values of p "�0, 1�, n1 � n2 � 1, κ � 1©2, and G�x� � x.

Next, we move to the conversion rates in Figure 4. What we observe in Figure 4(a) is one of

our main findings. What happens here is that in the IA setting, according to Lemma 1, a direct

advertiser with high valuation often bids conservatively and loses to an exchange advertiser with a

lower valuation. In addition, a direct advertiser with low valuation often bids aggressively and wins

against an exchange advertiser with a higher valuation. Both of these bidding behaviors create

an inefficient auction because an advertiser with lower valuation wins the consumer’s impression,

resulting in a lower conversion rate compared to the settings without information asymmetry.

Often in the literature, we see that in markets with thin competition when the publisher’s rev-

enue goes down (Figure 3(b)), conversion rate (Figure 4(b)) and the advertisers’ payoffs (Figure 6)

go up as we add information to the market (moving from CT to IA and then to FI). Here, we verify

this for our model. However, Proposition 1 states that this is not the case when the behavioral

values are correlated. In fact, both publisher revenue and conversion rate can move in the same

direction, as we observe in Figures 3(a) and 4(a) in contrast to Figures 3(b) and 4(b).

Regarding advertisers’ payoffs, in Figure 5 we can see that in the common-value case they

change non-monotonically both in terms of the information that is available to the advertisers and

in terms of p. First, in Figure 5(a), we see that the direct advertiser’s payoff decreases slightly in
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Figure 4: Conversion rate under the different information settings as a function of p " �0, 1�, for
n1 � n2 � 1, κ � 1©2, and G�x� � x.

the IA setting compared to the FI and CT settings, while in Figure 5(b) we see that the exchange

advertiser’s payoff increases significantly. This is expected because the exchange advertiser has a

strong competitive advantage in the IA setting, while in the FI and CT settings both advertisers are

similar. Second, in terms of p, we see that in the IA setting, the direct advertiser’s payoff is minimum

for p � 1©2 where the uncertainty about the common behavioral value is maximized. However, the

exchange advertiser’s payoff is maximized for a value p % 1©2, which gives the exchange advertiser

a higher probability of a high valuation in addition to the advantageous uncertainty of the direct

advertiser.
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(a) Direct advertiser.
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(b) Exchange advertiser.

Figure 5: Advertisers’ payoffs in the common-value case under the different information settings
for different values of p " �0, 1�, n1 � n2 � 1, κ � 1©2, and G�x� � x.

In contrast to Figure 5, in the independent-values case in Figure 6 we see that both payoffs go
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down monotonically as we remove information from the market. Furthermore, we see that both

types of advertisers have identical payoffs in all settings under IV, including the IA setting where

the exchange advertiser would normally be expected to have an advantage. Although the direct

advertiser has more fluctuations in their payoff in IA under different realizations of the valuations,

their average payoff is the same as the exchange advertiser’s one, because the advantage of extra

information is not that big when the valuations are independent. This perhaps surprising result is

independent of any distributional assumptions, but it is a consequence of the fact that there are

only two advertisers in the simple version of the model. In Section 6 we discuss the more general

case, which is more intuitive in the sense that the exchange advertiser has a higher payoff under the

IA setting, but still interesting in terms of how the payoff changes as a function of p (see Figure 10).

FI

IA

CT

0.0 0.2 0.4 0.6 0.8 1.0
p0.08

0.10

0.12

0.14

0.16

IV, Direct Advertiser's Payoff

(a) Direct advertiser.
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(b) Exchange advertiser.

Figure 6: Advertisers’ payoffs in the independent-values case under the different information set-
tings for different values of p " �0, 1�, n1 � n2 � 1, κ � 1©2, and G�x� � x.

5 Generalizations

In this section, we consider a more general version of the main model, for an arbitrary behavioral

distribution G (instead of uniform) and more than two advertisers. More specifically, there are n ' 2

advertisers competing for the impression, a subset of n1 & n of them are exchange advertisers, and

the remaining n2 � n � n1 are direct advertisers. For the common-value case, the results shown

in Section 4.1 extend to the more general setting; this is discussed in subsection 5.1. In the

independent-values case there are some interesting differences when we increase the number of

advertisers, which we discuss in subsection 5.2.
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5.1 Common-value case

Lemma 2 is an analog of Lemma 1 for arbitrary distributions G and more than one exchange

advertisers.

Lemma 2 (Advertisers’ bidding behavior). For any distribution G, any n1 ' 1, n2 � 1, and

κ ' 1©2, under the common-value IA setting, all the exchange advertisers bid their true valuations

while there exists c�p� " �0, 1� such that the direct advertiser’s bidding function is

β�c� ��
~������������
�1 � κ�c, if 0 & c $ c�p�,
κ � �1 � κ�c, if c�p� & c $ 1.

Moreover, c is independent of κ, and it is a continuously differentiable decreasing function in p,

with c�0� � 1, c�1©2� � n1E�c �G�c�n1�1�, and c�1� � 0.

Like in Lemma 1, we see that the direct advertiser sometimes underbids, for low values of c,

and sometimes overbids, for high values of c. Also, as p increases, they overbid more than they

underbid. Due to this non-truthful bidding, similar results to those in Section 4.1 continue to hold

for n1 % 1.
13

Propositions 5 and 6 generalize the results of Propositions 1 and 2 for arbitrary

distributions G. Proposition 5 is shown here for any number of advertisers n1, n2 ' 1. We further

check the robustness of Proposition 6 for n1, n2 % 1 in Section 6.

Proposition 5. For any distribution G, any n1, n2 ' 1, and κ " �0, 1�, under the common-value

case, we have that V
CV

IA & V
CV

FI � V
CV

CT .

Proposition 6. For any distribution G, n1 � n2 � 1, and κ ' 1©2, under the common-value case,

we have that W
CV

IA &W
CV

FI �W
CV

CT .

5.2 Independent-values case

Propositions 7 and 8 generalize the results of Propositions 3 and 4. The intuition for Proposition 7

is similar to that in the simple model version (as the amount of information available to advertisers

decreases, the efficiency of the auction decreases).

13
Lemma 3 in Section 6 generalizes this result for n2 % 1 as well.
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Proposition 7. For any distribution G, any n1, n2 ' 1, and κ " �0, 1�, under the independent-

values case, we have that V
IV

FI ' V
IV

IA ' V
IV

CT.

Proposition 8. For any distribution G, n1 � n2 � 1, and κ " �0, 1�, under the independent-values

case, we have that W
IV

FI &W
IV

IA &W
IV

CT.

In contrast to the common-value setting, under independent behavioral values, publisher revenue

behaves somewhat differently in general (for n ' 2) than what we showed in Propositions 4 and 8.

Proposition 9 describes the general phenomenon.

Proposition 9. For any distribution G and κ ' 1©2, under the independent-values case, we have

W
IV

FI & W
IV

CT for sufficiently small n, and W
IV

FI % W
IV

CT for sufficiently large n. The threshold for n

where the inequality is reversed depends on p, κ, and G.

As described in Section 4.2, the market-thinning effect that occurs under the IV setting makes

hiding information from advertisers beneficial for the publisher’s revenue when the number of

advertisers is low. However, when there is a sufficiently large number of advertisers, revealing more

information increases revenue.

The threshold for the number of advertisers n where the inequality in Proposition 9 reverses

depends on the parameters p and κ, and the distribution G. Figure 7 illustrates this. In Figure 7(a)

we see that as p decreases and as κ increases, we need more and more advertisers to make the full-

information setting give higher revenue than the contextual-targeting setting (i.e. W
IV

FI 'W
IV

CT). In

Figure 7(b) we see the thresholds for some examples of different Beta distributions for various

parameters α and β. Generally, we observe that contextual distributions G with higher average

have higher threshold. Also, if the average is low, a lower variance gives a higher threshold, but

when the variance is high, a higher variance gives a higher threshold.

Given Proposition 9, a natural question to ask is howW
IV

IA (the revenue under independent values

with information asymmetry) compares to W
IV

FI and W
IV

CT under different conditions. The intuition

behind Proposition 9 potentially suggests that W
IV

FI &W
IV

IA &W
IV

CT for low n and W
IV

FI 'W
IV

IA 'W
IV

CT

for high n. Surprisingly, this is not always the case. In fact, as illustrated in Figure 8, all six different

orderings between the revenues W
IV

FI , W
IV

IA , and W
IV

CT are possible under different conditions. The

information asymmetry between advertisers adds an additional element of complexity that the

market-thinning effect alone is not sufficient to explain.
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Figure 7: Minimum number of advertisers n such that W
IV

FI ' W
IV

CT for various values of p, κ, and
different contextual distributions G.

The intuition behind Figure 8 is as follows. In Proposition 9 we saw that a low n makes hiding

information from advertisers beneficial for the publisher, due to a thinner market. For a similar

reason, a low p also makes hiding information beneficial. This is because when p is low, there is a

low probability that the second highest bidder at the auction will have a behavioral value bi � 1,

which means that the clearing price will most likely be of the form �1� κ�ci if all advertisers know
their behavioral values. Thus, when p is low, the publisher prefers to hide information from as

many advertisers as possible to make them bid their expected valuation κp � �1 � κ�ci instead

of their actual valuation. On the contrary, when p is high, the publisher prefers to reveal the

behavioral information to as many advertisers as possible so that they can bid their (likely high)

actual valuation. In other words, when p is low we have thatW
IV

FI $W
IV

IA $W
IV

CT (Region 1) and when

p is high we have that W
IV

FI %W
IV

IA %W
IV

CT (Region 2). This also explains why in Regions 1, 3, and 4

it is W
IV

FI $W
IV

CT, while in Regions 2, 5, and 6 it is W
IV

FI %W
IV

CT.

To understand why the IA setting generates higher revenue than the other two information

settings in Regions 3 and 6 where p is medium and κ is high, let us consider the extreme case where

κ � 1. In this extreme case, the valuations of the advertisers are just bi, without a contextual

element. Under the IA setting, the exchange advertisers will bid their actual values bi, while the

direct advertisers will bid their expected valuation which is just p. When p is high, there is a

high chance that there will be at least two advertisers with high bi’s, so the publisher wants the
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Figure 8: Publisher’s revenues comparisons between different information settings under indepen-
dent behavioral values, for various values of p and κ, G�x� � x, and n1 � n2 � 2.

advertisers to learn their bi’s to have a high chance of getting a clearing price of 1 (Region 2).

When p is low, it is less likely that there will be at least two bi’s that are high, so the publisher

prefers if the advertisers bid p instead of their bi which is more likely 0. However, having many

advertisers bidding p has no additional benefit compared to just two advertisers bidding p, since

the clearing price will be p in both cases. Therefore, the optimal revenue for the publisher when p

is low is achieved when there is information asymmetry, where the publisher guarantees a clearing

price of at least p from the direct advertisers and there is also a (small) chance of something higher

from the exchange advertisers (Regions 3 and 6).

Figure 9: Publisher’s revenues for the different information settings under independent behav-
ioral values, for n � 8 advertisers, n1 " �0, n�, n2 � n � n1, κ � 1©2, G�x� � x, and
p " r0.01, 0.02, 0.03, 0.3x (from left to right).

Finally, when κ is low, the importance of behavioral value on the advertisers’ valuations is low.

The contextual part of the valuations dominates in determining the winner. As a result, the benefit
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of information asymmetry described above, where it is good for the publisher to have both direct

and exchange advertisers, is not essential anymore since the contextual values are known by both.

In Regions 4 and 5, the IA setting has worse revenue than the other two settings because of a third

effect.

Under the IA setting, there are two groups of advertisers, n1 exchange advertisers and n2 direct

advertisers. If we fix the total number of advertisers n � n1 � n2, then we can think of the FI

and the CT information settings as extreme versions of the IA setting. More specifically, FI is like

IA with �n1, n2� � �n, 0� and CT is like IA with �n1, n2� � �0, n�. With that view in mind, to

understand how W
IV

FI , W
IV

IA , and W
IV

CT compare to each other, it is useful to look at the function

W
IV

IA �n1, n2� �W
IV

IA �n1, n�n1� as n1 goes from 0 to n, while everything else is fixed. In Figure 9 we

can see some examples of this function (represented by the dashed line) for four different values of p,

starting from a low p in the first plot on the left and increasing it towards the right (we also consider

n � 8 advertisers to make the effect clearer). For n1 � 0 the function gives the revenue under the

CT setting (dotted line) and for n1 � n it gives the revenue under the FI setting (solid line). We

see that for low p this function is decreasing and it gradually becomes increasing as p increases.

While it transitions from decreasing to increasing, at some point, for medium values of p it becomes

non-monotone (first decreasing and then increasing). This is the point where the IA setting can

give lower revenue for the publisher than both the FI and the CT settings (Regions 4 and 5 in

Figure 8).

The explanation for this is as follows. As n1 increases from 0 to n, what we do is we move

advertisers one by one from the group of direct advertisers to the group of exchange advertisers.

The average of the bids in both groups is the same; therefore, the average bid is not affected as

we move advertisers. However, what changes is the variance of the distribution of the bids. More

specifically, the bids of the direct advertisers are more concentrated around the mean, while the

bids of the exchange advertisers are more spread out. When we move the first few advertisers from

the direct group to the exchange group, we make the bid distribution of the direct group slightly

worse. However, the advertiser who determines the clearing price of the overall auction is still

more likely in the direct group, as it has significantly more advertisers. Therefore, what happens

is that as we start moving advertisers, we make the clearing price lower. However, after we reach

a critical mass of advertisers in the exchange group, suddenly the clearing price will more likely
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be determined by the exchange group (i.e. there is a high chance that there will be at least two

exchange advertisers with high bi’s). From that point onwards, as we make the exchange group

larger, we increase the expected clearing price. This is the reason for the non-monotonicity of the

function in the second and third plots of Figure 9. This transition phase is also what explains the

existence of Regions 4 and 5 in Figure 8.

All three effects described above combined generate the six different regions we see in Figure 8.
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(a) Direct advertiser.
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0.05

0.06

0.07
IV, Exchange Advertiser's Payoff

(b) Exchange advertiser.

Figure 10: Advertisers’ payoffs in the independent-values case under the different information
settings for different values of p " �0, 1�, n1 � n2 � 2, κ � 1©2, and G�x� � x.

Advertisers’ payoffs in the independent-values case. In Figure 10 we can see the payoffs

of each type of advertiser for the three information settings and different values of p in �0, 1�
when the behavioral valuations of the advertisers are independent. The two plots of Figure 10

describe the more general behavior of the payoffs when there are more than two advertisers in total

(in contrast to Figure 6 which was for one advertiser of each type). There are a few interesting

things to note regarding the payoffs. First, in Figure 10(a), we see that for low values of p it is

D
IV

CT & D
IV

IA & D
IV

FI , while for high values of p it is D
IV

IA & D
IV

CT & D
IV

FI . In other words, when p is low, a

direct advertiser prefers the asymmetric setting where exchange advertisers have more information

than them, over the contextual targeting setting where all advertisers have similar information.

Second, in Figure 10(b), we see that for low values of p it is E
IV

CT & E
IV

IA & E
IV

FI , while for high

values of p it is E
IV

CT & E
IV

FI & E
IV

IA . In other words, when p is low, an exchange advertiser prefers

the full-information setting where direct advertisers have as much information as them, over the

asymmetric setting where the exchange advertiser has more information than the direct advertisers.
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The following result shows that these observations hold more generally.

Proposition 10. For a uniform distribution G, any n1, n2 ' 1, and κ ' 1©2, when p is sufficiently

low, it holds that D
IV

CT & D
IV

IA and E
IV

IA & E
IV

FI .

The intuition behind Proposition 10 is the following. As an advertiser, it is often advantageous

for you if other advertisers gain more information than they currently have. This is because when

an advertiser does not know their actual valuation they bid their expected valuation, but when p

is low it is more likely than not that their actual valuation is lower than their expected valuation.

In other words, when p is sufficiently low, you want the other advertisers to learn their actual

valuations because then it is very likely that they will lower their bids.

6 More Robustness Checks

In this section, we check the robustness of Proposition 6 (which is the remaining result not proven

analytically for the case where n1, n2 % 1, due to the lack of a closed-form general bidding function

for the direct advertisers under the common-value IA setting). We first start by establishing the

existence of a pure strategy symmetric equilibrium bidding function for the general case.

Lemma 3 (Advertisers’ bidding behavior). For any strictly increasing and smooth distribution G,

any n1, n2 ' 1, and κ ' 1©2, under the common-value IA setting, all exchange advertisers bid their

true valuations and there exists a pure strategy symmetric equilibrium bidding function β for the

direct advertisers satisfying β�c� " r�1 � κ�cx < �κ, κ � �1 � κ�c� for c " �0, 1�.
Lemma 3 is a generalization of Lemmas 1 and 2. Based on Lemma 3, we can numerically

approximate the function β for any n1, n2 ' 1 by solving the differential equation
∂u�β̃;β,c�

∂β̃

»»»»»»β̃�β�c� � 0,

where u is defined in equation (4). In Figure 11 we can see one example of the equilibrium bidding

function when there are two exchange advertisers and two direct advertisers. Like in Lemma 1, for

small contextual values c, direct advertisers underbid, while for large values of c they overbid.

Despite the lack of a closed-form bidding function, the intuition for the bidding behavior is

the same as the one discussed in Section 4.1. As a result, Proposition 6 continues to hold for a

large number of advertisers. In Figure 12 we can see a demonstration of this. In Figure 12(a) we

consider different values of n, i.e. the total number of advertisers, and assuming that there is an
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Figure 11: Bidding function of the direct advertisers (solid line) compared to their expected valu-
ation (dashed line), for n1 � n2 � 2, p � 1©2, κ � 1©2, and G�x� � x.
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(b) n � 10, n1 " r0, 1, . . . , nx, n2 � n � n1.

Figure 12: Publisher’s revenue under the different information settings in the common-value case
for different combinations of n1, n2 ' 1, p � 1©2, κ � 1©2, and G�x� � x.

equal number of exchange and direct advertisers, we estimate the bidding function of the direct

advertisers and calculate the publisher’s revenue. We see that for all cases it is W
CV

IA &W
CV

FI �W
CV

CT .

In Figure 12(b) we fix the total number of advertisers n and consider all different combinations of

n1 and n2. As before, we establish that W
CV

IA & W
CV

FI � W
CV

CT for all cases. Different choices for the

number of advertisers and the other parameters generate similar plots (see also Appendix B.2 for

all the key formulas used to generate the plots).

7 Conclusion

In this paper, we study the role of information asymmetry in microtargeted online advertising.

Figure 13 provides a concise summary of the main results. We find that, under certain conditions,
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disallowing microtargeting can simultaneously increase ads’ conversion rates and the publisher’s

revenue. This result aligns with recent anecdotal evidence and offers a potential explanation for

what has been observed in practice.

Figure 13: Summary of the main results.

More specifically, we demonstrate that when advertisers’ behavioral valuations for a consumer

are correlated, and some advertisers have access to the consumer’s behavioral information while

others do not, it is sometimes advantageous for the publisher, both in terms of revenue and conver-

sion rate, to hide all behavioral data from all advertisers (i.e., to disable microtargeting and only

allow targeting based on contextual information). This phenomenon does not occur if all advertisers

share the same information or if the behavioral valuations of the advertisers are independent.

The rationale behind this result is that information asymmetry in a market where advertisers

have correlated valuations can lead to inefficient bidding behavior. Some advertisers with high

valuations might underbid due to concerns about overpaying, while others with low valuations may

overbid for fear of losing valuable consumers. Both behaviors can result in a less efficient match

between the consumer and the winning advertiser. Restricting access to behavioral information for

all advertisers often leads to a less efficient market, because advertisers now have less information

on which to base their bids. However, the level of inefficiency caused by the presence of asym-

metric information is also significant; therefore, creating a level playing field among advertisers by

eliminating microtargeting can lead to a more efficient market overall.

This paper has several important implications for key stakeholders within the online display

advertising market. For publishers, our findings indicate that the information asymmetry among

advertisers participating in advertising auctions may result in unexpected consequences on both
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revenue and ad conversion rates. Therefore, a careful approach towards the type and amount

of information shared with advertisers is important, as more information is not always better,

potentially implementing measures such as disabling third-party cookies and microtargeting for a

more efficient ad market.

For advertisers, while more information about impressions they bid for is generally advanta-

geous, less information for competitors may not always be beneficial. The bidding behavior of

competitors could negatively impact them given the dynamics of the market, which underlines the

need for a more fair market. Moreover, their bidding strategies may need to be flexible, potentially

requiring underbidding or overbidding depending on the specific information available to them, for

optimal results.

Regarding regulators, both the NPO (Edelman, 2020) and the New York Times (Davies, 2019)

examples from Section 1 were responses from publishers to the General Data Protection Regulation

(GDPR) in the European Union. It is interesting to note that such data privacy protection laws,

initially conceived to protect consumers, can also inadvertently benefit publishers and advertisers.

Therefore, careful design of these regulations can result in a win-win scenario for all parties involved.

Lastly, from a consumer standpoint, higher conversion rates usually imply more satisfactory ad

content; therefore, disabling third-party tracking on a publisher’s website can offer additional ben-

efits beyond enhancing consumer privacy. It can also improve the relevance of the ads, supporting

the growing trend of websites offering users the option to opt-out from tracking.

An interesting direction for future research is to examine the impact of microtargeting on

consumer behavior. Consumers might prefer publishers who refrain from disclosing behavioral

information to advertisers. This preference could influence publishers’ decisions to enable or disable

microtargeting, thereby affecting both publishers’ revenue and conversion rates. If this is the case,

it could serve as an additional mechanism that explains the increase in conversion rates when

disallowing microtargeting.
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A Appendix

A.1 Proofs of Lemmas 1–2 and Propositions 1–5

Proof of Lemma 1

The direct advertiser’s expected utility when their contextual value is c and they bid β is:

u�β, c� �� p�1 � κ�E maxtβ�κ
1�κ

,0z

0
�c � c

¬�d�G�c¬�n1� � �1 � p��1 � κ�E mint β
1�κ

,1z

0
�c � c

¬�d�G�c¬�n1�.
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Suppose that κ $ 1�κ. First, let us consider the case when 0 & β $ κ, we have u�β, c� � �1�p��1�
κ� D β

1�κ

0 �c � c
¬�d�G�c¬�n1�, which means, ∂u

∂β
� n1�1 � p� �c � β

1�κ
�G � β

1�κ
�n1�1

G
¬ � β

1�κ
� � 0 ¼

β � �1� κ�c. For, the case when κ $ β & 1� κ, we have u�β, c� � p�1� κ� D β�κ
1�κ

0 �c� c
¬�d�G�c¬�n1��

�1� p��1� κ� D β
1�κ

0 �c� c
¬�d�G�c¬�n1�, which means, ∂u

∂β
� n1p �c � β�κ

1�κ
�G �β�κ

1�κ
�n1�1

G
¬ �β�κ

1�κ
�� n1�1�

p� �c � β

1�κ
�G � β

1�κ
�n1�1

G
¬ � β

1�κ
� . When n1 � 1 and G�x� � x, ∂u

∂β
� 0 implies that β � κp��1�κ�c.

For the case when 1�κ $ β & 1, we have u�β, c� � p�1�κ� D β�κ
1�κ

0 �c�c¬�d�G�c¬�n1���1�p��1�κ� D 10 �c�
c
¬�d�G�c¬�n1�, which means, ∂u

∂β
� n1p �c � β�κ

1�κ
�G �β�κ

1�κ
�n1�1

G
¬ �β�κ

1�κ
� � 0 ¼ β � κ � �1 � κ�c.

The global maximum of u occurs either at β � �1� κ�c, κp� �1� κ�c, κ� �1� κ�c, or at one of the

singular points β � κ, 1 � κ. Let

u1�c� �� u�β � �1 � κ�c, c� �
~������������

1
2
�1 � p��1 � κ�c2, c & κ

1�κ
,

1
2
�1 � κ�c2 � p

2
� κ

2

1�κ
	 , κ

1�κ
$ c & 1,

u2�c� �� u�β � κp � �1 � κ�c, c� �

~����������������������������

1
2
�1 � p��1 � κ�c2 � 1

2
�1 � p�p2 � κ

2

1�κ
	 , c &

�1�p�κ
1�κ

,

1
2
�1 � κ�c2 � 1

2
�1 � p�p � κ

2

1�κ
	 , �1�p�κ

1�κ
$ c & 1 � pκ

1�κ
,

1
2
p�1 � κ�c2 � 1

2
p�1 � p�2 � κ

2

1�κ
	

��1 � p��1 � κ� �c � 1
2
� , 1 � pκ

1�κ
$ c & 1,

u3�c� �� u�β � κ � �1 � κ�c, c� �
~������������

1
2
�1 � κ�c2 � 1�p

2
� κ

2

1�κ
	 , c & 1 � κ

1�κ
,

1
2
p�1 � κ�c2 � �1 � p��1 � κ� �c � 1

2
� , 1 � κ

1�κ
$ c & 1,

u4�c� �� u�β � κ, c� � �1 � p��1 � κ�E κ
1�κ

0
�c � c

¬�d�G�c¬�n1� � �1 � p�κc � 1

2
�1 � p� � κ

2

1 � κ
� ,

u5�c� �� u�β � 1 � κ, c� �p�1 � κ�E 1�2κ
1�κ

0
�c � c

¬�d�G�c¬�n1� � �1 � p��1 � κ�E 1

0
�c � c

¬�d�G�c¬�n1�
�p�1 � 2κ�c � 1

2
p��1 � 2κ�2

1 � κ
� � �1 � p��1 � κ� �c � 1

2

 .

Clearly, u4�c� & u1�c� (in fact u4 is tangent to 1
2
�1 � p��1 � κ�c2 at c � κ

1�κ
) and u5�c� & u3�c�

(in fact u5 is tangent to 1
2
p�1 � κ�c2 � �1 � p��1 � κ� �c � 1

2
� at c � 1 � κ

1�κ
), so we can ignore u4

and u5. Then β � �1� κ�c when u1�c� % u2�c�, u3�c�, β � κp� �1� κ�c when u2�c� % u1�c�, u3�c�,
and β � κ � �1 � κ�c when u3�c� % u1�c�, u2�c�, and we break ties arbitrarily. We note that

u1, u2, u3 are all continuous in c and that du1

dc
&

du2

dc
&

du3

dc
, therefore u1 can only be overtaken by
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u2, u3 and u2 can only be overtaken by u3, and u3 cannot be overtaken. So, for κ $ 1 � κ, there

must exist c and c̄ such that β�c� � �1 � κ�c if c $ c, β�c� � κp � �1 � κ�c if c $ c $ c̄, and

β�c� � κ � �1 � κ�c. Let us now find c12, the point where u2 overtakes u1, suppose that
�1�p�κ
1�κ

&

c12 &
κ

1�κ
: 1

2
�1 � p��1 � κ�c212 � 1

2
�1 � κ�c212 � 1

2
�1 � p�p � κ

2

1�κ
	 ¼ c12 �

Ó
1�pκ

1�κ
" � �1�p�κ

1�κ
, κ
1�κ

� .
We do not need to further check other intervals due to the uniqueness of the intersection point.

Similarly, we find the location of the point c23 where u3 overtakes u2: 1 � κ
1�κ

& c23 & 1 �
pκ

1�κ
:

1
2
p�1�κ�c223� �1�p��1�κ� �c23 � 1

2
� � 1

2
�1�κ�c223� 1

2
�1�p�p � κ

2

1�κ
	 . This is a quadratic equation

in c23 that has roots: 1 �
Ó
pκ

1�κ
. We take the negative root c23 � 1 �

Ó
pκ

1�κ
" �1 � κ

1�κ
, 1 �

pκ

1�κ
�.

Finally, we consider the point c13 where u3 overtakes u1, suppose that 1 � κ
1�κ

$ c13 $
κ

1�κ
:

1
2
�1 � p��1 � κ�c213 � 1

2
p�1 � κ�c213 � �1 � p��1 � κ� �c13 � 1

2
� . This is a quadratic equation in c13

with two roots:
Ó
1�pÓ

1�p�
Ó
p
. Since c13 " �0, 1�, we take the positive root: c13 �

Ó
1�pÓ

1�p�
Ó
p
. Finally,

we take c �� min rc12, c13x, and c̄ �� max rc13, c23x, this also ensures that c13 is relevant only if

1 � κ
1�κ

$ c23 $ c13 $ c12 $
κ

1�κ
.

Now, suppose that κ ' 1 � κ. Let us consider the case when 0 & β & 1 � κ, we have u�β, c� �
�1� p��1� κ� D β

1�κ

0 �c� c
¬�d�G�c¬�n1�, as before, ∂u

∂c
� 0 implies β � �1� κ�c. For 1� κ & β & κ, we

find that u�β, c� � �1 � p��1 � κ� D 10 �c � c
¬�d�G�c¬�n1�, which is a constant in β. For κ $ β & 1, we

have u�β, c� � p�1 � κ� D β�κ
1�κ

0 �c � c
¬�d�G�c¬�n1� � �1 � p��1 � κ� D 10 �c � c

¬�d�G�c¬�n1�, which means

∂u
∂β
� 0 implies β � κ � �1 � κ�c. This time we let

u1�c� �� u�β � �1 � κ�c, c� � 1

2
�1 � p��1 � κ�c2,

u2�c� �� u�β � κ � �1 � κ�c, c� � 1

2
p�1 � κ�c2 � �1 � p��1 � κ� �c � 1

2

 .

And, as before, u3�c� �� u�β � κ, c�, u4�c� �� u�β � 1�κ, c�, which we can check that they satisfy

u3�c� & u1�c� and u4�c� & u2�c�, so we can ignore them. Since du1

dc
� �1�p��1�κ� & du2

dc
� �1�κ�c,

we conclude that u2 can only overtake u1 and cannot be overtaken. Hence, there exists c � c̄ such

that β�c� � �1 � κ�c if c $ c and β�c� � κ � �1 � κ�c if c % c̄. Further inspection reveals that

c � c̄ � c13 �
Ó
1�pÓ

1�p�
Ó
p
as previously found. This completes the proof. ■
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Proofs of Propositions 1, 2, 3, and 4

Propositions 1, 2, 3, and 4 are special cases of Propositions 5, 6, 7, and 8. We present the proofs

of the more general statements next. ■

Proof of Lemma 2

When κ ' 1©2, we have κ ' 1 � κ, and we only need to consider two cases: 0 & β & 1 � κ

where the direct advertiser expected utility is u�β, c� � �1 � p��1 � κ� D β
1�κ

0 �c � c
¬�d�G�c¬�n1� and

κ & β & 1 where the direct advertiser expected utility is u�β, c� � p�1�κ� D β�κ
1�κ

0 �c� c
¬�d�G�c¬�n1��

�1 � p��1 � κ� D 10 �c � c
¬�d�G�c¬�n1�. We do not need to consider the 1 � κ $ β $ κ case since

u�β, c� � �1 � p��1 � κ� D 10 �c � c
¬�d�G�c¬�n1� is constant in β over that domain. It follows that if

0 & β & 1�κ, then ∂u
∂β
� n1�1� p� �c � β

1�κ
�G � β

1�κ
�n1�1

G
¬ � β

1�κ
� � 0 ¼ β � �1�κ�c. Similarly,

if κ & β & 1, then ∂u
∂β

� n1p �c � β�κ

1�κ
�G �β�κ

1�κ
�n1�1

G
¬ �β�κ

1�κ
� � 0 ¼ β � κ � �1 � κ�c. For

any fixed c, the global maximum of u occurs either at β � �1 � κ�c, κ � �1 � κ�c or at one of the

singular points β � κ, 1 � κ. Let

u1�c� �� u�β � �1 � κ�c, c� � �1 � p��1 � κ�E c

0
�c � c

¬�d�G�c¬�n1�,

u2�c� �� u�β � κ � �1 � κ�c, c� � p�1 � κ�E c

0
�c � c

¬�d�G�c¬�n1� � �1 � p��1 � κ�E 1

0
�c � c

¬�d�G�c¬�n1�,
u3�c� �� u�β � κ, c� � �1 � p��1 � κ�E κ

1�κ

0
�c � c

¬�d�G�c¬�n1�,
u4�c� �� u�β � 1 � κ, c� � p�1 � κ�E 1� κ

1�κ

0
�c � c

¬�d�G�c¬�n1� � �1 � p��1 � κ�E 1

0
�c � c

¬�d�G�c¬�n1�.
Since u3�c� is the tangent line to u1�c� at c � κ

1�κ
and u4�c� is the tangent line to u2�c� at

c � 1 � κ
1�κ

, and both u1, u2 are convex, we have u3 & u1 and u4 & u2, so we can ignore u3, u4.

Next, we note that du1

dc
� �1 � p��1 � κ�G�c�n1

$ p�1 � κ�G�c�n1
� �1 � p��1 � κ� � du2

dc
for all

c " �0, 1�. We conclude that u1 can only be overtaken by u2. Note also that u1�0� � 0 % u2�0� �
��1 � p��1 � κ� D 10 c

¬
d�G�c¬�n1� and u2�1� � p�1 � κ� D c0�1 � c

¬�d�G�c¬�n1� � u1�1� % u1�1�, so the

intersection point c�p� " �0, 1� exists and is unique. For a given distribution G, we can find c from

the relation u1�c� � u2�c�. Equivalently, the relation for c may be written as

E 1

0
�c � c

¬�d�G�c¬�n1� � 1 � 2p

1 � p
E c

0
�c � c

¬�d�G�c¬�n1�. (2)
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Clearly, 1 � κ cancels out and c is independent of κ. Furthermore, u1 � u2 is continuously dif-

ferentiable in p and in c with nonvanishing derivative, and hence c is continuously differentiable

in p by the Implicit Function Theorem. Differentiating u1 � u2 � 0 with respect to p, we get

�
1

1�p
D c0�c � c

¬�d�G�c¬�n1� � ��1 � p��1 �G�c�n1� � pG�c�n1� dc

dp
. The factor in the square bracket

is positive and also D c0�c � c
¬�d�G�c¬�n1� % 0, hence

dc

dp
$ 0.

From (2) we can see that p � 0 implies D 1c �c� c
¬�d�G�c¬�n1� � 0, which holds exactly if c�0� � 1

as the integral is $ 0 for all c $ 1. Similarly, we can see that the LHS of (2) is bounded in ��1, 1�,
while the RHS approaches �� as p � 1

�
, unless c � 0, which must be the case. Hence c�1� � 0.

Lastly, the RHS of (2) vanishes when p � 1©2, therefore, we are left with D 10 �c � c
¬�d�G�c¬�n1� � 0

or c � D 10 c
¬
d�G�c¬�n1� � E�n1cG�c�n1�1�, as claimed. ■

Proof of Proposition 5

The statement of the proposition holds in a more general setting, which we prove in Lemma 4.

Lemma 4. Consider any auction mechanism M such that, whenever bidders are symmetric and

independent, in equilibrium M allocates the impression to the highest-valuation bidder. Suppose

bidder i’s valuation is given by some function of random variables corresponding to behavioral and

contextual data: vi � v�bi, ci�, where we assume v is increasing in ci. Then under the common-

value case b1 � b2 � � �� b, for any distribution G, any n1, n2 ' 1, and with selling mechanism

M , we have V
CV

IA & V
CV

FI � V
CV

CT .

Proof. Under both the full-information and the contextual-targeting settings, when the behavioral

value b is common among all the bidders, we have that the bidders are symmetric with their

valuations determined by the independently drawn contextual values ci. Therefore, the impression

is allocated to the bidder with the highest ci under M . Under full information, the valuation of

any bidder i is vi � v�bi, ci�. Under the contextual-targeting setting, the expected valuation of any

bidder i is E�vi� � E�v�bi, ci�¶ci�. It follows that the expected conversion rate is

V
CV
FI � Eb ��n1 � n2�E 1

0
v�b, c�G�c�n1�n2�1G

¬�c�dc� � �n1 � n2�E 1

0
E �v�b, c�¶c�G�c�n1�n2�1G

¬�c�dc � V
CV
CT ,

where in the second equality we applied Fubini’s Theorem. Since the mechanism M under full

information ensures that the bidder with the highest valuation will win, it must be the case that
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V
CV

FI is the highest possible conversion rate under any information setting. In particular, V
CV

IA &

V
CV

FI � V
CV

CT .

Proposition 5 follows by applying Lemma 4 to the case where M is a second-price auction and

v�bi, ci� �� κbi � �1� κ�ci. Since bi � 1 with probability p and bi � 0 with probability 1� p, it also

follows that E�v�bi, ci�¶ci� � κp � �1 � κ�ci. ■
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B Online Appendix

B.1 Proofs of Propositions 6–9 and Lemma 3

Proof of Proposition 6

The fact that W
CV

CT �W
CV

FI is general and can be seen by directly comparing their expressions. For

n1 � n2 � 1 and κ ' 1©2 we may simplify (5) to:

W
CV
IA �2pE

1

c

�κ � �1 � κ�c��1 �G�c��G¬�c�dc � 2�1 � p�E c

0

�1 � κ�c�1 �G�c��G¬�c�dc

� pE
c

0

�1 � κ�cG¬�c�dc � pE
c

0

�κ � �1 � κ�c��1 �G�c��G¬�c�dc � �1 � p�E 1

c

�1 � κ�c�1 �G�c��G¬�c�dc

�W
CV
FI � p �E c

0

�κ � �1 � κ�c�G�c�G¬�c�dc � E c

0

�κ � �1 � κ�c��G�c� �G�c��G¬�c�dc � κG�c�

� �1 � p� �E 1

c

�1 � κ�c�G�c� �G�c��G¬�c�dc � E 1

c

�1 � κ�c�1 �G�c��G¬�c�dc

��W

CV
FI �W∆,

where W∆ is defined to be the sum of the first and the second bracket. Let us show that W∆ & 0

for all p " �0, 1�. First, we note that (2) can be written equivalently as

pn1 E
c

0
cG�c�n1�1G

¬�c�dc� �1� p�n1 E
1

c
cG�c�n1�1G

¬�c�dc � cpG�c�n1
� c�1� p��1�G�c�n1�. (3)

Then, we have

W∆ �

1

2
κpG�c�2 � �1 � κ�pE c

0

cG�c�G¬�c�dc
� κpG�c�2 � �1 � κ�pG�c�E c

0

cG
¬�c�dc � 1

2
κpG�c�2 � �1 � κ�pE c

0

cG�c�G¬�c�dc � κpG�c�
� �1 � κ��1 � p�E 1

c

cG�c�G¬�c�dc � �1 � κ��1 � p�G�c�E 1

c

cG
¬�c�dc � �1 � κ��1 � p�E 1

c

c�1 �G�c��G¬�c�dc

�2�1 � κ�pE c

0

cG�c�G¬�c�dc � �1 � κ��1 � p�E 1

c

cG�c�G¬�c�dc

� �1 � κ�G�c�pE c

0

cG
¬�c�dc � �1 � κ�G�c��1 � p�E 1

c

cG
¬�c�dc

� �1 � κ��1 � p�E 1

c

c�1 �G�c��G¬�c�dc � κpG�c�

&�1 � κ�pcG�c�2 � �1 � κ��1 � p�E 1

c

cG�c�G¬�c�dc

� �1 � κ�G�c� �cpG�c� � c�1 � p��1 �G�c��� � �1 � κ��1 � p�E 1

c

c�1 �G�c��G¬�c�dc

� �1 � κ��1 � p�c�1 �G�c�� � �1 � κ�pE c

0

cG
¬�c�dc � �1 � κ��1 � p�E 1

c

cG
¬�c�dc.
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The last inequality can be explained as follows. We rewrite the first line using the inequalities:

2�1 � κ�p D c0 cG�c�G¬�c�dc & �1 � κ�pc D c0 d�G�c�2� � �1 � κ�pcG�c�2. The second line follows

from (3) with n1 � 1. Lastly, we rewrite κpG�c� using (3) and the fact that 1 � κ & κ, c & 1:

κpG�c� ' �1�κ�pcG�c� � �1�κ�p D c0 cG¬�c�dc��1�κ��1�p� D 1c cG
¬�c�d��1�κ�c�1�p��1�G�c��.

Back to the main calculation, after some cancellations, the last inequality becomes:

W∆ &�1 � κ��1 � p�c�1 �G�c��2 � 2�1 � κ��1 � p�E 1

c
c�1 �G�c��G¬�c�dc � �1 � κ�pE c

0
cG

¬�c�dc
&�1 � κ��1 � p�c�1 �G�c��2 � 2�1 � κ��1 � p�cE 1

c
�1 �G�c��G¬�c�dc � �1 � κ�pE c

0
cG

¬�c�dc
� � �1 � κ�pE c

0
cG

¬�c�dc & 0.

Therefore, we have that W∆ & 0 as needed. In fact, we can see from W∆ & ��1 � κ�p D c0 cG¬�c�dc,
that the equality holds exactly when p � 0, 1, i.e. W

CV

IA ¶p�0,1 �W
CV

FI ¶p�0,1 �W
CV

CT ¶p�0,1. ■

Proof of Proposition 7

Let’s consider N �� n1�n2 advertisers which are divided into two disjoint subsets A � raA1 ,�, a
A
n1
x

and B � raB1 ,�, a
B
n2
x, A8B � r1, 2,�, n1 � n2x. Set A contains exchange advertisers with full

information and hence bid their true valuation. Set B contains direct advertisers with only the

contextual value, and hence bid the expected value κp� �1� κ�c. Let’s consider an instance of an

auction where the contextual values in set B are given by c1 %� % cn2
, whereas the highest bid in

A is given by the bidder a
�
with valuation κb

�
� �1� κ�c�. Independently, we also draw b1,�, bn2

behavioral values for the direct advertisers in B.

First, we consider the case where a
B
1 from B is the winner: κp � �1 � κ�c1 % κb

�
� �1 � κ�c�.

Suppose that we moved an advertiser a
B
i j a

B
1 from set B to set A, keeping all the contextual values

fixed. After the move, either a
B
i becomes the winner or nothing changes. Suppose a

B
i becomes the

winner, this means bi � 1, κ � �1 � κ�ci % κb
�
� �1 � κ�c� and κ � �1 � κ�ci % κp � �1 � κ�c1 ¼

c1 � ci $
κ�1�p�
1�κ

.

With probability p we have b1 � 1, and in this case, the change in the winner’s valuation ∆vw

is given by E�∆vw¶b1 � 1� � �κ � �1 � κ�ci� � �κ � �1 � κ�c1� � ��1 � κ��c1 � ci� % �κ�1 � p�.
With probability 1� p we have b1 � 0, and in this case, the change in the winner’s valuation is
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given by E�∆vw¶b1 � 0� � �κ � �1 � κ�ci� � �1 � κ�c1 � κ � �1 � κ��c1 � ci� % κ � κ�1 � p� � κp.

Therefore, the expected change of the winner’s valuation is E�∆vw� � E�∆vw¶b1 � 1�P�b1 �
1� � E�∆vw¶b1 � 0�P�b1 � 0� % �p � κ�1 � p� � �1 � p� � κp � 0.

Suppose that we moved an advertiser a
B
1 from set B to A, keeping all the drawn contextual

values fixed. After the move, either a
B
1 remains the winner, hence nothing changes, or it is not.

If a
B
1 is no longer a winner, then either a

�
is the winner, in that case, we have an increase in the

winner’s valuation since κb
�
� �1� κ�c� % κb1 � �1� κ�c1. Otherwise, a

B
2 is now the winner, so we

must have b1 � 0 and κp � �1 � κ�c2 % �1 � κ�c1 ¼ c1 � c2 $
κp

1�κ
.

With probability p we have b2 � 1, and in this case, the change in the winner’s valuation is

given by E�∆vw¶b2 � 1� � �κ � �1 � κ�c2� � �1 � κ�c1 � κ � �1 � κ��c1 � c2� % κ � κp � κ�1 � p�.
With probability 1� p we have b2 � 0, and in this case, the change in the winner’s valuation is

given by E�∆vw¶b2 � 0� � �1 � κ�c2 � �1 � κ�c1 � ��1 � κ��c1 � c2� % �κp.
Therefore, the expected change of the winner’s valuation is E�∆vw� � E�∆vw¶b1 � 1�P�b1 �

1� � E�∆vw¶b1 � 0�P�b1 � 0� % p � κ�1 � p� � �1 � p� � κp � 0.

Now, we consider the case where a
�
is the winner: κb

�
� �1�κ�c� % κp� �1�κ�c1. If a winner

changed by moving an a
B
i advertiser from the set B to the set A, keeping all the drawn contextual

and behavioral values fixed, then the moved advertiser must have κbi� �1�κ�ci % κb
�
� �1�κ�c�.

Therefore, the winner’s valuation can only increase in this case.

It follows that the conversion rate increases or remains the same for every advertiser we move

from set B to set A. We conclude that V
CV

FI ' V
CV

IA ' V
CV

CT . ■

Proof of Proposition 8

Let’s denote by w
IV

FI , w
IV

IA, w
IV

CT the revenue under each information setting for an instant of auction,

so that we have W
IV

FI �� E�wIV

FI �,W IV

IA �� E�wIV

IA�,W IV

CT �� E�wIV

CT�. Consider an instance of auction

where the contextual value of the exchange advertiser is c1 and the contextual value of the direct

advertiser is c2. Both c1, c2 are drawn independently from the distribution G. First, we consider

E �wIV

FI ¶c1, c2�, there are two cases: the case maxrc1, c2x % minrc1, c2x � κ
1�κ

, for which we find:

E �wIV

FI ¶c1, c2� � �κ� �1� κ�minrc1, c2x� � p� �1� κ�minrc1, c2x � �1� p� � κp� �1� κ�minrc1, c2x
and the case: minrc1, c2x � κ

1�κ
% maxrc1, c2x, where we have

E �wIV
FI ¶c1, c2� ��κ � �1 � κ�minrc1, c2x� � p2 � �1 � κ�minrc1, c2x � �1 � p� � �1 � κ�maxrc1, c2x � �1 � p�p
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�κp
2
� �1 � κ�minrc1, c2x � �1 � p � p

2� � �1 � κ�maxrc1, c2x � �1 � p�p.

Next, we consider E �wIV

IA¶c1, c2�, there are three cases: the case c1 % c2 �
pκ

1�κ
, for which we find

E �wIV

IA¶c1, c2� � κp� �1�κ�c2, the case: c2 �
pκ

1�κ
% c1 % c2 �

�1�p�κ
1�κ

, where we have E �wIV

IA¶c1, c2� �
�κp��1�κ�c2� �p��1�κ�c1 ��1�p�, and the case: c2�

�1�p�κ
1�κ

% c1, where we have E �wIV

IA¶c1, c2� �
�κ � �1 � κ�c1� � p � �1 � κ�c1 � �1 � p� � κp � �1 � κ�c1.

Lastly, in all cases we have that E �wIV

CT¶c1, c2� � κp � �1 � κ�minrc1, c2x.
Now we can check that for all possible pairs of c1, c2 we have E �wIV

FI ¶c1, c2� & E �wIV

IA¶c1, c2� &
E �wCT

IA ¶c1, c2�. Taking an expectation over all possible c1, c2 we have that W
IV

FI & W
IV

IA & W
IV

CT as

claimed. ■

Proof of Proposition 9

From Proposition 8 we already know that for n1 � n2 � 1 we have W
IV

FI & W
IV

CT for all p " �0, 1�.
Now, fix p " �0, 1� and consider the n1, n2 % 0 case. Note that using integration by-parts we can

rewrite W
IV

FI as:

W
IV

FI ��n1 � n2��1 � κ��1 � p�n1�n2�1p � �n1 � n2�κ�1 � p�n1�n2�1p

� �1 � κ�E 1

0
�c � 1 � �1 � p�G�c��1 � p�G¬�c� 
 d ��1 � p�G�c��n1�n2

� E 1

0
�κ � �1 � κ�c � �1 � κ��1 �G�c��

G¬�c� 
 d �pG�c� � �1 � p��n1�n2

� � �n1 � n2��2κ � 1��1 � p�n1�n2�1p � �1 � κ��1 � p�n1�n2Ec�G�c�n1�n2 �c � 1 � �1 � p�G�c��1 � p�G¬�c� �
� Ec��pG�c���1�p��n1�n2 �κ � �1 � κ�c � �1 � κ��1 �G�c��

G¬�c� � .

Where Ec�F �c��.� denotes the expected value with c distributed by F �c�. Similarly, we can rewrite

W
IV

CT as

W
IV

CT � E
1

0
�κp � �1 � κ�c � �1 � κ��1 �G�c��

G¬�c� 
 dG�c�n1�n2

� Ec�G�c�n1�n2 �κp � �1 � κ�c � �1 � κ��1 �G�c��
G¬�c� � .

When n1 and n2 are large, the densities of distributions G�c�n1�n2 and �pG�c� � �1 � p��n1�n2

become concentrated around c � 1. Therefore, W
IV

CT tends towards κp � �1 � κ�. On the other
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hand, the first and second terms in W
IV

FI tend to zero due to �1 � p�n1�n2 but the last term tends

to κ � �1 � κ� � 1. Hence, we have W
IV

FI %W
IV

CT for all sufficiently large n1 and n2. ■

Proof of Proposition 10

Using the formulas in the Online Appendix B.2 for G�x� � x and κ ' 1©2, we derive that

∂

∂p
�DIV

IA �D
IV

CT� »»»»»»p�0 � n1

n1 � n2 � 1
� 2κ

n1 � n2 � 1
�

1
n1 � n2



and

∂

∂p
�EIV

FI � E
IV

IA� »»»»»»p�0 � n2

n1 � n2 � 1
� 2κ

n1 � n2 � 1
�

1
n1 � n2


 .
Since 2κ

n1�n2�1
�

1
n1�n2

'
1

n1�n2�1
�

1
n1�n2

% 0 when κ ' 1©2, both derivatives are strictly positive

at p � 0. Therefore, there is a neighborhood of p � 0, where the result holds. ■

Proof of Lemma 3

The exchange advertisers will always bid their true valuation as it is a weakly dominant strategy

to do so. Therefore, for the remainder, we will focus on the nontrivial part, which is the direct

advertisers’ bidding strategy.

The expected utility for a direct advertiser with contextual value c from bidding β̃ when all

other n2 � 1 direct advertisers follow the strategy β is given by:

u�β̃;β, c� ��p ��1 � κ�E maxu β̃�κ

1�κ
,0{

0
�c � c

¬�G�supβ�1�0, κ � �1 � κ�c¬��n2�1 �n1G�c¬�n1�1G
¬�c¬�� dc¬

�E supβ
�1�0,β̃�

0
�κ � �1 � κ�c � β�c¬��G�maxwβ�c¬� � κ

1 � κ
, 0}�n1 ��n2 � 1�G�c¬�n2�2G

¬�c¬�� dc¬�
� �1 � p� ��1 � κ�E minu β̃

1�κ
,1{

0
�c � c

¬�G�supβ�1�0, �1 � κ�c¬��n2�1 �n1G�c¬�n1�1G
¬�c¬�� dc¬

�E supβ
�1�0,β̃�

0
��1 � κ�c � β�c¬��G�minwβ�c¬�

1 � κ
, 1}�n1 ��n2 � 1�G�c¬�n2�2G

¬�c¬�� dc¬� . (4)

Let us restrict our attention to the bidding functions β that belong to the following class of

functions: F �� tβ " L
1�0, 1� ¶ β is represented by a non-decreasing function �0, 1�� �0, 1�z.

Here, L
1�0, 1� denotes the usual Banach space of the equivalence classes of Lebesgue-integrable

functions on �0, 1� equipped with the usual norm ½f½L1 �� D 10 ¶f�x�¶dx. It is not hard to verify
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that F is a convex and compact subset of L
1�0, 1�.

We note that the sign of each of the integrals in (4) is determined by the sign of �c � c
¬�,

κ � �1 � κ�c � β�c¬�, and �1 � κ�c � β�c¬�, respectively, all of which are increasing functions in c

and decreasing in c
¬
. Essentially, given β and c, finding the maximum β̃ � β̃0 of u�β̃;β, c� is to

‘integrate until the integrands are negative’. The reality is slightly more subtle, as the upper limit

of each integral are different non-linear functions of β̃.

Lemma 5. Given β " F and c " �0, 1� then u�β̃;β, c� as a function of β̃ " �0, 1� achieves its global
maximum inside r�1 � κ�cx < �κ, κ � �1 � κ�c�.
Proof. First, let us observe where a maximum of u�β̃;β, c� cannot be located. If β̃�c� " �κ �
�1 � κ�c, 1� then the third term of (4) is constant in β̃. The first term is strictly decreasing for

β̃ % κ � �1 � κ�c. The second and fourth terms are non-constant if β�c� % κ � �1 � κ�c for

some c, but then these two terms decrease with β̃ because β�c¬� % κ � �1 � κ�c % �1 � κ�c for

c
¬
� maxβ

�1�0, β̃� ' maxβ
�1�0, κ � �1 � κ�c�. Similarly, if β̃ " �0, �1 � κ�c� then only the third

and fourth terms of (4) are non-constant in β̃. The third term is strictly increasing for β̃ $ �1�κ�c
and for any c

¬
� maxβ

�1�0, β̃� & max β̃
�1�0, �1 � κ�c�, which means β�c¬� $ �1 � κ�c, hence the

fourth term is increasing.

If β̃ " ��1 � κ�c, κ�, then every term of (4) is constant except for the fourth term which could

be non-constant if β�c� % �1 � κ�c for some c, and in that case, the fourth term is decreasing. In

other words, the maximum value of u�β̃;β, c� over ��1 � κ�c, κ� is reached at β̃ � �1 � κ�c. Since

the fourth term of (4) is necessarily strictly decreasing, it is possible that u�β̃;β, c� also attains its

maximum value at other points in ��1� κ�c, κ�, this fact will serve no practical implication for us.

Next, we focus on the case where β̃ " �κ, κ � �1 � κ�c�, and we shall show that u�β̃;β, c�
also reaches its maximum over this interval. We note that u�β̃;β, c� is left-continuous because

supβ
�1�0, β̃� is left-continuous, and the point where it is not continuous is exactly where rc ¶ β�c� �

β̃0x has non-empty interior. In particular, let b �� infrc ¶ β�c� � β̃0x and b̄ �� suprc ¶ β�c� � β̃0x
then it follows that �b, b̄� L S�β̃0�. In that case, we have supβ

�1�0, β̃� & b for β̃ & β̃0 and

supβ
�1�0, β̃� ' b̄ for β̃ % β̃0. Given that β̃ " �κ, κ � �1 � κ�c�, the third term of (4) is constant

in a neighborhood of β̃0. Let δ % 0 be arbitrarily small, then the first term of (4) will take

approximately the same value at β̃0 and at β̃0 � δ. If u�β̃0;β, c� $ u�β̃0 � δ;β, c� it must be
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the case that the sum of the second and fourth integrals is positive over �b, b̄�. In particular,

�κ � �1 � κ�c � β̃0�G �max u β̃0�κ

1�κ
, 0{	n1

� ��1 � κ�c � β̃0�G �min u β̃0

1�κ
, 1{	n1

% 0.

But we also know that for all c
¬
" supβ

�1�0, β̃0 � δ� we have β�c¬� $ β̃0 � δ, then from the

inequality above we have that the sum of the integrands of the second and fourth integrals in (4)

is positive immediately to the right of β̃0 as δ % 0 is arbitrary small. Since β̃0 & κ � �1 � κ�c, the
integrand of the first integral in (4) is also positive. It follows that u�β̃;β, c� continue to increase

over some right neighbourhood of β̃0 � δ, hence supβ̃ u�β̃;β, c� % limβ̃�β̃�0
u�β̃;β, c�.

Lemma 5 allows us to define the best-response set-valued function as follows: BR�β, c� ��
argmaxβ̃"�0,1� u�β̃;β, c�. Let us also restrict our attention to β such that β�c� " r�1�κ�cx<�κ, κ�
�1 � κ�c�.
Lemma 6. The best-response function is closed-valued and non-decreasing in the sense that if

c1 $ c2, then maxBR�β, c1� & minBR�β, c2�.
Proof. The fact that BR�β, c� is closed follows since according to Lemma 5, u�β̃;β, c� is left-

continuous and if u�β̃;β, c� is discontinuous at β̃0 then lim supβ̃�β̃�0
u�β̃;β, c� is always less than

the global maximum value of u. In other words, if β̃i " BR�β, c�, i � 1, 2,� and β̃i � β̃0 " �0, 1�
then u�β̃0;β, c� � u�β̃i;β, c� for all i, which means β̃0 " BR�β, c�. Therefore, it makes sense to

talk about the maximum and minimum of BR�β, c�.
Given any δ % 0, we note that it is possible to write u�β̃;β, c�δ� � u�β̃;β, c��∆�β̃;β, δ�, where

∆�β̃;β, c� is exactly given by (4) but with �c�c¬�, �κ��1�κ�c�β�c¬��, and ��1�κ�c�β�c¬�� factors
replaced by δ, �1�κ�δ, and �1�κ�δ, respectively. Thus, ∆�β̃;β, δ� is a non-decreasing function in β̃

and strictly increases over �0, 1�κ�< �κ, 1�. Then the fact that BR�β, c� is non-decreasing follows

from the following elementary argument. Let β̃0 � maxBR�β, c� then u�β̃0;β, c� ' u�β̃;β, c� for all
β̃ " �0, β̃0�. Therefore, u�β̃0;β, c � δ� % u�β̃;β, c � δ� for all β̃ " �0, β̃0� by the strict monotonicity

of ∆�β̃;β, δ�, which means any other global maxima of u�β̃;β, c� δ� must be in �β̃0, κ� �1� κ�c�,
proving the lemma.

Using Lemma 6 it is now possible to define the best-response bidding function to the bidding

β of all other n2 � 1 direct advertisers: BR � F � F , β̃ �� BR�β� � c ( minBR�β, c�, where
we have slightly abused the notation, using both β̃ as a particular bidding value and the bidding
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function, and BR as both the best response bidding set-valued function and the best response

bidding function-valued map. However, we hope that any ambiguity can be resolved by context.

Lemma 7. The best-response function BR is continuous with respect to the L
1
norm.

We will omit the technical proof, but the intuition is clear. Any two β1, β2 " F non-decreasing

functions which are ‘close’ together under L
1
norm must take similar values β1�c� � β2�c� at any

c they are both continuous. Moreover, the location of any discontinuous points of β1 and β2 must

be similar. The same is true for their inverses supβ
�1
1 �0, β̃� � β

�1
2 �0, β̃�. Hence we can expect

u�β̃;β1, c� � u�β̃;β2, c� for all β̃ and c and therefore the maximum point of u�.;β1, c� should be

close to the maximum point of u�.;β2, c�.
From Lemma 7, the response function BR is continuous with respect to L

1
norm and maps

a convex compact subset F L L
1�0, 1� into itself. L

1�0, 1� is a normed-vector space, hence it

is automatically a Hausdorff locally convex topological vector space. From the Kakutani-Fan-

Glicksberg Theorem, we know that BR has a fixed point. ■

B.2 Key Formulas

Unless stated otherwise, all formulas in this section are valid for any given κ " �0, 1�, p " �0, 1�,
n1, n2 ' 0 and an arbitrary contextual-value distribution G on �0, 1�.
Common-value case

To deal with any discontinuities of the bidding function β we let β
�1�a, b� denote the inverse image

of β i.e. a set I such that x " I ¼ β�x� " �a, b�, and supβ
�1�a, b� denotes the supremum of this

set.

Advertisers’ conversion rate:

The advertisers’ conversion rates under each information setting are given by:

V
CV

FI �p�n1 � n2�E 1

0
�κ � �1 � κ�c�G�c�n1�n2�1G

¬�c�dc
� �1 � p��n1 � n2�E 1

0
�1 � κ�cG�c�n1�n2�1G

¬�c�dc,

48



V
CV

IA �pn2 E
1

0
�κ � �1 � κ�c�G �max vβ�c� � κ

1 � κ
, 0|
n1

G�c�n2�1G
¬�c�dc

� pn1 E
1

0
�κ � �1 � κ�c�G�c�n1�1G �supβ�1�0, κ � �1 � κ�c��n2

G
¬�c�dc

� �1 � p�n2 E
1

0
�1 � κ�cG �min v β�c�

1 � κ
, 1|
n1

G�c�n2�1G
¬�c�dc

� �1 � p�n1 E
1

0
�1 � κ�cG�c�n1�1G �supβ�1�0, �1 � κ�c��n2

G
¬�c�dc,

V
CV

CT � �n1 � n2�E 1

0
�κp � �1 � κ�c�G�c�n1�n2�1G

¬�c�dc.
We note that V

CV

FI � V
CV

CT .

Publisher’s expected revenue:

The publisher’s expected revenues for each information setting are given by:

W
CV

FI �p�n1 � n2��n1 � n2 � 1�E 1

0
�κ � �1 � κ�c��1 �G�c��G�c�n1�n2�2G

¬�c�dc
� �1 � p��n1 � n2��n1 � n2 � 1�E 1

0
�1 � κ�c�1 �G�c��G�c�n1�n2�2G

¬�c�dc,

W
CV
IA �pn1n2 E

1

0

�κ � �1 � κ�c� �1 �G �supβ�1�0, κ � �1 � κ�c���G�c�n1�1G �supβ�1�0, κ � �1 � κ�c��n2�1
G

¬�c�dc
� pn1n2 E

1

0

β�c� �1 �G �max vβ�c� � κ

1 � κ
, 0|

G �max vβ�c� � κ

1 � κ
, 0|


n1�1

G�c�n2�1G
¬�c�dc

� pn1�n1 � 1�E 1

0

�κ � �1 � κ�c� �1 �G�c��G�c�n1�2G �supβ�1�0, κ � �1 � κ�c��n2
G

¬�c�dc
� pn2�n2 � 1�E 1

0

β�c� �1 �G�c��G �max vβ�c� � κ

1 � κ
, 0|


n1

G�c�n2�2G
¬�c�dc

� �1 � p�n1n2 E
1

0

�1 � κ�c �1 �G �supβ�1�0, �1 � κ�c���G�c�n1�1G �supβ�1�0, �1 � κ�c��n2�1
G

¬�c�dc
� �1 � p�n1n2 E

1

0

β�c� �1 �G �min v β�c�
1 � κ

, 1|

G �min v β�c�
1 � κ

, 1|

n1�1

G�c�n2�1G
¬�c�dc

� �1 � p�n1�n1 � 1�E 1

0

�1 � κ�c �1 �G�c��G�c�n1�2G �supβ�1�0, �1 � κ�c��n2
G

¬�c�dc
� �1 � p�n2�n2 � 1�E 1

0

β�c� �1 �G�c��G �min v β�c�
1 � κ

, 1|

n1

G �c�n2�2 G
¬�c�dc, (5)

W
CV

CT � �n1 � n2��n1 � n2 � 1�E 1

0
�κp � �1 � κ�c��1 �G�c��G�c�n1�n2�2G

¬�c�dc.
We note that W

CV

FI �W
CV

CT .
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Direct advertisers’ payoff:

D
CV

FI �
V

CV

FI �W
CV

FI

n1 � n2
�E 1

0
�pκ � �1 � κ�c�G�c�n1�n2�1G

¬�c�dc
� �n1 � n2 � 1�E 1

0
�pκ � �1 � κ�c��1 �G�c��G�c�n1�n2�2G

¬�c�dc, (6)

D
CV
IA �pE

1

0

�κ � �1 � κ�c�G �max vβ�c� � κ

1 � κ
, 0|


n1

G�c�n2�1G
¬�c�dc

� �1 � p�E 1

0

�1 � κ�cG �min v β�c�
1 � κ

, 1|

n1

G�c�n2�1G
¬�c�dc

� pn1 E
1

0

�κ � �1 � κ�c� �1 �G �supβ�1�0, κ � �1 � κ�c���G�c�n1�1G �supβ�1�0, κ � �1 � κ�c��n2�1
G

¬�c�dc
� p�n2 � 1�E 1

0

β�c� �1 �G�c��G �max vβ�c� � κ

1 � κ
, 0|


n1

G�c�n2�2G
¬�c�dc

� �1 � p�n1 E
1

0

�1 � κ�c �1 �G �supβ�1�0, �1 � κ�c���G�c�n1�1G �supβ�1�0, �1 � κ�c��n2�1
G

¬�c�dc
� �1 � p��n2 � 1�E 1

0

β�c� �1 �G�c��G �min v β�c�
1 � κ

, 1|

n1

G �c�n2�2 G
¬�c�dc, (7)

D
CV

CT �
V

CV

CT �W
CV

CT

n1 � n2
� D

CV

FI . (8)

Exchange advertisers’ payoff:

E
CV

FI �
V

CV

FI �W
CV

FI

n1 � n2
� D

CV

FI �
V

CV

CT �W
CV

CT

n1 � n2
� E

CV

CT , (9)

E
CV

IA �pE 1

0
�κ � �1 � κ�c�G�c�n1�1G �supβ�1�0, κ � �1 � κ�c��n2

G
¬�c�dc

� �1 � p�E 1

0
�1 � κ�cG�c�n1�1G �supβ�1�0, �1 � κ�c��n2

G
¬�c�dc

� pn2 E
1

0
β�c� �1 �G �max vβ�c� � κ

1 � κ
, 0|

G �max vβ�c� � κ

1 � κ
, 0|
n1�1

G�c�n2�1G
¬�c�dc

� pn�n1 � 1�E 1

0
�κ � �1 � κ�c� �1 �G�c��G�c�n1�2G �supβ�1�0, κ � �1 � κ�c��n2

G
¬�c�dc

� �1 � p�n2 E
1

0
β�c� �1 �G �min v β�c�

1 � κ
, 1|

G �min v β�c�

1 � κ
, 1|
n1�1

G�c�n2�1G
¬�c�dc

� �1 � p��n1 � 1�E 1

0
�1 � κ�c �1 �G�c��G�c�n1�2G �supβ�1�0, �1 � κ�c��n2

G
¬�c�dc. (10)
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Independent-values case

In the independent-values case, all advertisers bid truthfully. An advertiser with a contextual value

c but without behavioral information would bid the expected value κp � �1 � κ�c. An advertiser

with full information would bid v � κb � �1 � κ�c where v is distributed by G̃�v� �� P�v¬ & v� �
pG �max tv�κ

1�κ
, 0z� � �1 � p�G �min t v

1�κ
, 1z�.

Advertisers’ conversion rate:

The advertisers’ conversion rates under each information setting are given by:

V
IV

FI � �n1 � n2�E 1

0
vG̃�v�n1�n2�1G̃

¬�v�dv,
V

IV

IA � n1 E
1

0
vG̃�v�n1�1G �min umax uv � κp

1 � κ
, 0{ , 1{	n2

G̃
¬�v�dv

� �1 � p�n2 E
1

0
�1 � κ�cG̃�κp � �1 � κ�c�n1G�c�n2�1G

¬�c�dc
� pn2 E

1

0
�κ � �1 � κ�c�G̃�κp � �1 � κ�c�n1G�c�n2�1G

¬�c�dc,

V
IV

CT � �n1 � n2�E 1

0
�κp � �1 � κ�c�G�c�n1�n2�1G

¬�c�dc.
Publisher’s expected revenue:

The publisher’s expected revenues for each information setting are given by:

W
IV

FI � �n1 � n2��n1 � n2 � 1�E 1

0
v �1 � G̃�v�� G̃�v�n1�n2�2G̃

¬�v�dv,

W
IV

IA �n1�n1 � 1�E 1

0
v �1 � G̃�v�� G̃�v�n1�2G �min umax uv � κp

1 � κ
, 0{ , 1{	n2

G̃
¬�v�dv

� n1n2 E
1

0
v �1 �G �min umax uv � κp

1 � κ
, 0{ , 1{		 G̃�v�n1�1G �min umax uv � κp

1 � κ
, 0{ , 1{	n2�1

G̃
¬�v�dv

� n1n2 E
1

0
�κp � �1 � κ�c� �1 � G̃�κp � �1 � κ�c�� G̃�κp � �1 � κ�c�n1�1G�c�n2�1G

¬�c�dc
� n2�n2 � 1�E 1

0
�κp � �1 � κ�c� �1 �G�c�� G̃ �κp � �1 � κ�c�n1 G�c�n2�2G

¬�c�dc,

W
IV

CT � �n1 � n2��n1 � n2 � 1�E 1

0
�κp � �1 � κ�c��1 �G�c��G�c�n1�n2�2G

¬�c�dc.
Direct advertisers’ payoff:
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D
IV

FI �
V

IV

FI �W
IV

FI

n1 � n2
�E 1

0
vG̃�v�n1�n2�1G̃

¬�v�dv
� �n1 � n2 � 1�E 1

0
v �1 � G̃�v�� G̃�v�n1�n2�2G̃

¬�v�dv, (11)

D
IV
IA ��1 � p�E 1

0
�1 � κ�cG̃�κp � �1 � κ�c�n1G�c�n2�1G

¬�c�dc
� pE 1

0
�κ � �1 � κ�c�G̃�κp � �1 � κ�c�n1G�c�n2�1G

¬�c�dc
� n1 E

1

0
v �1 �G �min umax uv � κp

1 � κ
, 0{ , 1{		 G̃�v�n1�1G �min umax uv � κp

1 � κ
, 0{ , 1{	n2�1

G̃
¬�v�dv

� �n2 � 1�E 1

0
�κp � �1 � κ�c� �1 �G�c�� G̃ �κp � �1 � κ�c�n1 G�c�n2�2G

¬�c�dc, (12)

D
IV

CT �
V

IV

CT �W
IV

CT

n1 � n2
�E 1

0
�κp � �1 � κ�c�G�c�n1�n2�1G

¬�c�dc
� �n1 � n2 � 1�E 1

0
�κp � �1 � κ�c��1 �G�c��G�c�n1�n2�2G

¬�c�dc.
Exchange advertisers’ payoff:

E
IV

FI �
V

IV

FI �W
IV

FI

n1 � n2
� D

IV

FI , E
IV

CT �
V

IV

CT �W
IV

CT

n1 � n2
� D

IV

CT, (13)

E
IV

IA �E
1

0
vG̃�v�n1�1G �min umax uv � κp

1 � κ
, 0{ , 1{	n2

G̃
¬�v�dv

� �n1 � 1�E 1

0
v �1 � G̃�v�� G̃�v�n1�2G �min umax uv � κp

1 � κ
, 0{ , 1{	n2

G̃
¬�v�dv

� n2 E
1

0
�κp � �1 � κ�c� �1 � G̃�κp � �1 � κ�c�� G̃�κp � �1 � κ�c�n1�1G�c�n2�1G

¬�c�dc. (14)

B.3 First-Price Auction

A commonly used auction format in advertising auctions nowadays is the first-price auction format

(see e.g., Despotakis et al., 2021). In this section, we modify our model to a first-price auction

instead of a second-price auction for selling the impression, to test the robustness of our main

findings.

In a first-price auction, since advertisers pay their own bid if they win, direct advertisers who
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do not have complete information about their valuations, are even more likely to bid conservatively

(underbid) compared to a second-price auction. As a result, information asymmetry can lead to

both a lower conversion rate and reduced publisher revenue, compared to the symmetric information

settings, for similar reasons this happens in second-price auctions. In other words, our result that

disabling microtargeting can simultaneously increase both the conversion rate and publisher revenue

remains valid in common-value first-price auctions. Propositions 11 and 12 below confirm this.

Proposition 11. For any distribution G, any n1, n2 ' 1, κ " �0, 1�, under the common-value case,

and when the auction format is first-price, we have that V
CV

IA & V
CV

FI � V
CV

CT .

Proof. This result follows from Lemma 4, where the mechanism M is a first-price auction.

Proposition 12. For any distribution G, n1 % 1, n2 ' 1, κ ' 1©2, and sufficiently low p, under the

common-value case, and when the auction format is first-price, we have that W
CV

IA &W
CV

FI �W
CV

CT .

Proof. Suppose that, when there is information asymmetry, at equilibrium the direct and exchange

advertisers use the bidding functions βD � �0, 1� � �0, 1� and βE � �0, 1�2 � �0, 1�, respectively.
The expected utility of a direct advertiser with contextual value c who bids β̃ is

uD�β̃;βD, βE , c� �p �κ � �1 � κ�c � β̃�G �supβ�1E ��0, β̃�, b � 1��n1
G�supβ�1D ��0, β̃���n2�1

� �1 � p� ��1 � κ�c � β̃�G �supβ�1E ��0, β̃�, b � 0��n1
G�supβ�1D ��0, β̃���n2�1.

The expected utility of an exchange advertiser with contextual value c and behavioral value b who

bids β̃ is uE�β̃;βD, βE , c, b� � �κb � �1 � κ�c � β̃�G�supβ�1E ��0, β̃�, b��n1�1G�supβ�1D ��0, β̃���n2 .

The expected publisher revenue is

W
CV

IA �pn2 E
1

0
βD�c�G�supβ�1E ��0, βD�c��, 1��n1G�c�n2�1G

¬�c�dc
� pn1 E

1

0
βE�c, 1�G�c�n1�1G�supβ�1D ��0, βE�c, 1����n2G

¬�c�dc
� �1 � p�n2 E

1

0
βD�c�G�supβ�1E ��0, βD�c��, 0��n1G�c�n2�1G

¬�c�dc
� �1 � p�n1 E

1

0
βE�c, 0�G�c�n1�1G�supβ�1D ��0, βE�c, 0����n2G

¬�c�dc.
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For the other two information settings, W
CV

FI and W
CV

CT , the revenue is identical to the second-price

auction case by the revenue equivalence principle.

The conversion rate is

V
CV

IA �pn2 E
1

0
�κ � �1 � κ�c�G �supβ�1E ��0, βD�c��, 1��n1

G�c�n2�1G
¬�c�dc

� pn1 E
1

0
�κ � �1 � κ�c�G�c�n1�1G �supβ�1D �0, βE�c, 1���n2

G
¬�c�dc

� �1 � p�n2 E
1

0
�1 � κ�cG �supβ�1E ��0, βD�c��, 0��n1

G�c�n2�1G
¬�c�dc

� �1 � p�n1 E
1

0
�1 � κ�cG�c�n1�1G �supβ�1D �0, βE�c, 0���n2

G
¬�c�dc.

If p is sufficiently low,
14

the direct advertisers will choose to not compete with the exchange

advertisers if b � 1 and will always bid as if b � 0 regardless of the actual value of b (which they do

not know anyway). In this case, when b � 0 the game reduces to a symmetric first-price auction

among all n1 � n2 advertisers, and when b � 1 the game reduces to a symmetric first-price auction

among n1 exchange advertisers. Consequently, we have a symmetric equilibrium where the bidding

functions have simple analytical closed forms as follows:

βD�c� � �1 � κ� �c � E c

0
�G�t�
G�c�


n1�n2�1

dt� ,
βE�c, b� � κb � �1 � κ� �c � E c

0
�G�t�
G�c�


n1��1�b�n2�1

dt� . (15)

Under the perfect-information and the contextual-targeting settings, the bidders are symmetric

and independent, thus it follows from the revenue equivalence principle that W
CV

IA and W
CV

FI are both

equal to their second-price auction counterparts, hence they are equal to each other. We also note

from (15) that βD�c� & βE�c, b� & κb � �1 � κ� �c � D c0 �G�t�
G�c�	n1�n2�1

dt
, for all c, b, where notice

that the RHS is the bidding function under the perfect-information setting. The first inequality

holds since βE�c, 1� � βD�c� ' κ � �1 � κ� ' 0 because κ ' 1©2, and the second inequality holds

since �G�t�
G�c�	n1��1�b�n2�1

' �G�t�
G�c�	n1�n2�1

for all t, c " �0, 1� such that t & c. In other words, the

bids of all advertisers are at least as high in the perfect-information setting as under information

asymmetry, hence the revenue W
CV

FI is at least as high as W
CV

IA .

14
E.g. if κp � �1 � κ� $ κ ¼ p $ 2 � 1©κ, which is a sufficient but not necessary bound.
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C Common Contextual Values

In this section, we consider the case where the contextual random variables ci are not independent,

but they are the same for all advertisers, i.e. c1 � c2 � . . . � cn �� c, where c is drawn from

distribution G. As in the main model, we consider the following sub-cases. Let E�c� �� D 10 cdG�c�
in the following.

� Common behavioral values (CV): All the advertisers have the same valuation κb � �1 � κ�c.
– Full Information (FI): All advertisers bid κb � �1 � κ�c. For n1, n2 ' 1: V

CV

FI �

�κ � �1 � κ�E�c�� � p � �1 � κ�E�c� � �1 � p� � κp � �1 � κ�E�c�.
– Information Asymmetry (IA): Exchange advertisers bid κb � �1 � κ�c. If there is at

least one exchange advertiser, direct advertisers bid �1 � κ�c. If there is no exchange

advertiser, direct advertisers bid κp��1�κ�c. For n1, n2 ' 1: V
CV

IA � �κ � �1 � κ�E�c�� �
p � �1 � κ�E�c� � �1 � p� � κp � �1 � κ�E�c�.

– Contextual Targeting (CT): All advertisers bid κp � �1 � κ�c. For n1, n2 ' 1: V
CV

CT �

κp � �1 � κ�E�c�.
We can see that V

CV

FI � V
CV

IA � V
CV

CT .

� Independent behavioral values (IV): Advertisers have valuations κbi � �1 � κ�c.
– Full Information (FI): All advertisers bid their valuation κbi � �1� κ�c. For n1, n2 ' 1:

V
IV

FI � �κ � �1 � κ�E�c�� � �1 � �1 � p�n1�n2� � �1 � κ�E�c� � �1 � p�n1�n2

� κ �1 � �1 � p�n1�n2� � �1 � κ�E�c�.
– Information Asymmetry (IA): Exchange advertisers bid their valuation κbi � �1 � κ�c.

Direct advertisers bid κp � �1 � κ�c. For n1, n2 ' 1:

V
IV

IA � �κ � �1 � κ�E�c�� � �1 � �1 � p�n1� � �κp � �1 � κ�E�c�� � �1 � p�n1

� κ �1 � �1 � p�n1�1� � �1 � κ�E�c�.
– Contextual Targeting (CT): All advertisers bid κp � �1 � κ�c. For n1, n2 ' 1: V

IV

CT �

κp � �1 � κ�E�c�.
Since 1 � �1 � p�n is an increasing function in n ' 0, it follows that V

CV

FI ' V
CV

IA ' V
CV

CT .
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