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Abstract

In online advertising auctions, the predictive value of consumer data can depend on an un-

observable consumer state, such as whether a traveler is on business or vacation. We call this

state-dependent predictive value and study its interaction with asymmetric data access across

advertisers. We develop a game-theoretic model that features latent consumer intent, hetero-

geneous advertiser information, and a data component whose relevance varies with the unob-

servable state. We analyze three information settings (full information, partial information, and

information asymmetry) under both correlated and independent valuation structures. When

detailed data shifts advertisers’ valuations in a correlated direction, information asymmetry dis-

torts equilibrium bidding: constrained advertisers systematically overbid or underbid, reducing

both allocative efficiency and publisher revenue. Restricting data access for all advertisers elim-

inates this distortion, simultaneously improving conversion rates and revenue, overturning the

presumed tradeoff between privacy and market efficiency. When valuations are independent,

more information improves conversion rates but can reduce revenue, and information asymme-

try can outperform both symmetric settings. Finally, advertisers’ preferences over data regimes

do not always align with their information status: informed advertisers may prefer that their

competitors also gain data access, eliminating their own advantage, while uninformed advertisers

may prefer that informed competitors retain access.
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1 Introduction

In online advertising markets, the value of observable user data often depends on unobservable

consumer intent. Consider a user visiting a travel website to book a flight. Several hotel advertisers

compete to display an ad to this user. The user may be planning a business trip or a vacation, an

unobservable distinction that can affect their probability of booking any given hotel. Now consider a

specific user characteristic, such as price sensitivity. Some advertisers can infer this from proprietary

behavioral data or third-party cookies, while others cannot. Importantly, the predictive value of

this information depends on the user’s unobservable intent: for a business traveler whose expenses

are reimbursed, personal price sensitivity may be largely irrelevant to hotel choice; for a vacation

planner, it may be a key determinant of conversion. We call this phenomenon state-dependent

predictive value: the relevance of observable data varies with an unobservable consumer state. This

interaction between latent consumer heterogeneity and asymmetric advertiser information access

characterizes many online advertising markets, from restaurant searches to retail shopping, yet has

received limited theoretical attention.

Understanding this interaction is particularly important given ongoing shifts in how consumer

data is accessed and used. Major browsers are phasing out third-party cookies, privacy regula-

tions increasingly limit data collection and sharing, and platforms face growing pressure to restrict

advertiser access to user information. These changes are commonly framed as a tradeoff between

privacy and economic efficiency: protecting consumer data at the cost of less relevant ads and

lower revenues. Yet reported empirical evidence complicates this narrative. When the Dutch public

broadcaster NPO stopped using tracking cookies, it experienced a substantial increase in adver-

tising revenue (Edelman, 2020), and subsequent experiments revealed higher conversion rates with

contextual rather than microtargeted ads in certain cases (Snelders et al., 2020). The New York

Times reported similar outcomes after discontinuing behavioral targeting (Davies, 2019). Reduced

intermediary costs may partially explain the revenue gains (Hsiao, 2020), but they do not account

for the observed improvements in conversion rates. While these observations are context-specific

and potentially confounded by concurrent changes in supply-side dynamics, they motivate a the-

oretical puzzle: Under what conditions can reducing the information available to bidders improve

not only seller revenue but also the quality of the match between ads and consumers?
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Existing auction theory provides partial but incomplete answers. The classical linkage principle

(Milgrom and Weber, 1982) establishes that a seller can increase revenue by publicly revealing

information it holds, because doing so reduces bidder uncertainty and strengthens competition. On

the other hand, in the advertising context, Levin and Milgrom (2010) shows that better-informed

advertisers can thin out markets, reducing competition and prices, a finding that highlights how

information can decrease revenues through market structure effects. However, these frameworks

generally treat the relevance of available information as uniform across consumers, rather than

allowing it to vary with an unobservable consumer state. Furthermore, while revenue effects have

been studied extensively, the impact of information structures on the quality of the ad-to-consumer

match (i.e., conversion rates) has received comparatively little attention. The prevailing assump-

tion, that more information should yield better ad-to-consumer matches even when it reduces

revenues for competitive reasons, has not been subjected to formal theoretical scrutiny in settings

where information relevance itself is state-dependent.

This paper develops a game-theoretic model of advertising auctions designed to address this gap.

Our model incorporates latent consumer intent that is unobservable to advertisers, heterogeneous

data access across advertisers, and, critically, the feature that additional data’s predictive value

varies with the consumer’s unobservable state. We further allow detailed data to shift advertisers’

valuations in either correlated or independent ways, capturing different market structures. We

analyze three information settings: Full Information, where all advertisers access detailed consumer

data; Partial Information, where no advertiser does; and Information Asymmetry, where only a

subset of advertisers has access. For each setting, we derive equilibrium bidding strategies and

compare outcomes along three dimensions: publisher revenue, conversion rates, and advertiser

payoffs.

Our analysis produces three main results. First, when detailed data generates correlated shifts in

advertiser valuations (e.g., a user’s price sensitivity affects all hotel advertisers’ conversion probabil-

ities similarly), restricting data access uniformly can improve both publisher revenue and conversion

rates relative to the asymmetric setting. The mechanism is that information asymmetry distorts

equilibrium bidding: uninformed advertisers face adverse selection and systematically overbid or

underbid, reducing allocative efficiency. Removing the asymmetry eliminates this distortion and

improves average match quality between ads and users. Second, when valuations are indepen-
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dent across advertisers, Information Asymmetry can generate higher revenues than either Full or

Partial Information, suggesting that selective data access policies may outperform uniform ones.

Third, advertisers’ preferences over information settings need not align with their information sta-

tus: informed advertisers may prefer that their competitors also gain data access, eliminating their

own advantage, while uninformed advertisers may prefer that informed competitors retain access

rather than face a uniformly uninformed market, because the competitive effects of information

can dominate direct informational benefits.

These results contribute to several ongoing discussions. For platforms evaluating cookie depreca-

tion or data-sharing restrictions, our findings identify specific market conditions (namely, correlated

valuation shifts and pre-existing information asymmetry) under which privacy-enhancing policies

improve both revenue and ad relevance simultaneously. A platform can assess the applicability of

these conditions by examining whether detailed consumer data (e.g., browsing history, behavioral

signals) tends to shift advertisers’ valuations in the same direction across competitors in a given

auction, or whether its effects are idiosyncratic. For advertisers, the analysis reveals that informa-

tion advantages do not reliably translate into competitive benefits, particularly in markets where

detailed data shifts valuations in independent ways. For regulators, we show that the welfare im-

plications of data restrictions depend on the correlation structure of advertiser valuations and the

existing degree of information asymmetry, factors that must be understood before the net effects

of privacy regulation can be assessed.

2 Related Literature

This research contributes to the growing literature on targeted advertising and online advertising

auctions. We organize our discussion of the most closely related theory papers around the following

themes: the effects of targeting on firm competition, the role of information structures in advertising

auctions, and the implications of privacy and data restrictions.

Targeting and Firm Competition

A substantial body of work examines how improved targeting ability affects competition among

advertisers. A general finding in this literature is that targeting tends to increase firms’ profits and
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the number of consumer-product matches, but the effects can be non-monotonic or even negative

under certain conditions. Iyer et al. (2005) describe a model of competing firms who can target

different segments of consumers with advertising and show that targeted advertising will improve the

firms’ profits and, moreover, it can sometimes be more valuable than targeted pricing. Bergemann

and Bonatti (2011) show that better targeting causes an increase in the number of consumer-product

matches, but prices of ads change non-monotonically in the targeting capacity.

However, several papers identify conditions under which targeting can harm firms. Chen et al.

(2001) study the effects of imperfect targetability on prices for different segments of consumers.

Interestingly, they find that improving the targetability of a firm can sometimes benefit both the

firm and its competitor. Brahim et al. (2011) study a model with two firms competing in prices and

targeted advertising. They show that firms’ profits can be lower with targeted relative to random

advertising. Despotakis and Yu (2022) study a multidimensional targeting model and show that

sometimes the use of multiple dimensions of data to target consumers can have negative effects for

a firm. Johnson (2013) considers targeted advertising in combination with advertising avoidance

technology. He shows that targeting will increase firms’ profits, but it can make consumers worse

off.

Our model departs from this stream in that we do not study the effects of improved targeting

per se. Instead, we examine what happens when the same consumer data has different predictive

value depending on an unobservable consumer state, and when advertisers differ in their ability

to access that data. This combination of state-dependent data value and information asymmetry

generates effects that are absent from models with symmetric advertisers or state-independent data.

Information Structures in Advertising Auctions

A second strand of literature studies how information is, or should be, structured in advertising

auction environments. The foundational work of Milgrom and Weber (1982) on affiliated-value

auctions established the linkage principle: that a seller benefits from publicly revealing information

it holds, because doing so reduces the winner’s curse and intensifies competition.

In the specific context of advertising, De Corniere and De Nijs (2016) show that when a platform

chooses to reveal the information it has about a consumer to advertisers, the advertisers will set

higher prices in anticipation of a better matching. This will benefit the advertisers and the platform.
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Our setting differs in that revealing information can actually worsen the matching between the

advertisers and the consumer, resulting in a lower social welfare. This is because in addition to the

full disclosure or non-disclosure of information, we also consider the case where not all advertisers

have access to the same information about the consumer, and this asymmetry plays a significant

role in our model. Ada et al. (2022) study the impact of providing ad context information in

ad exchanges and find that in most cases ad exchanges can boost publishers’ revenues by sharing

context information with ad buyers. Bobkova (2024) discusses the role of the advertisers’ (bidder)

endogenous information choice in auction design and focuses on the symmetric Bayesian Nash

equilibrium outcomes. This is unlike our work where we assume the information to be controlled

by the publisher which allows us to focus on the implications of information asymmetry.

Our model differs from this literature in two important respects. First, whereas much of the

information design literature considers a principal who controls the precision of information pro-

vided symmetrically to agents, we study settings where information access is inherently asymmetric

across advertisers, and the question is whether to eliminate this asymmetry by restricting or ex-

panding access. Second, in existing models, revealing information generally improves the match

between the auction winner and the object; in our setting, revealing information to an asymmetric

set of advertisers can worsen the match between ads and consumers, because the resulting bidding

distortions outweigh the informational gains.

Privacy, Data Restrictions, and Market Outcomes

A third group of papers examines how restrictions on data access affect advertising market out-

comes. Levin and Milgrom (2010) provides an influential analysis showing that superior infor-

mation can thin out competition in advertising auctions. Building on this insight, Rafieian and

Yoganarasimhan (2021) show that the revenues of ad-networks can increase when users preserve

their privacy, because more precise targeting can reduce competition. However, when this happens,

the targeting becomes less efficient. Our model replicates this effect in the case of independent val-

uations among the advertisers, but in the case of dependent valuations, we show that revenue and

targeting efficiency can move in the same direction, both improving when data access is restricted.

Several papers study related aspects of privacy and data in advertising markets. Zhang and

Katona (2012) study how contextual advertising affects product market competition. Esteves and
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Resende (2016) study how targeted advertising can be used by competing firms to price discriminate

different segments of consumers. Shen and Miguel Villas-Boas (2018) study advertising based on the

past purchase behavior of consumers and examine how it affects product prices for a monopolist.

Hummel and McAfee (2016) study how the number of bidders in an auction affects a seller’s

revenue under two different settings (bundling vs. targeting), though unlike our model, they assume

independent valuations.

Advertising Market Structure

Finally, a growing literature examines how the organizational structure of advertising markets

interacts with information. Choi and Sayedi (2023b) investigate the effects of private exchanges on

the display advertising market, finding that while private exchanges offer higher quality impressions

compared to open exchanges, they can also create information asymmetry among advertisers, which

can hurt publisher’s revenue. Choi and Sayedi (2023a) examine the effects of ad agencies on the

online advertising market, revealing that publishers face a trade-off when deciding whether to

withhold targeting information from agencies, which can either mitigate “bid rotation” and attract

direct advertisers or reduce the efficiency of allocation for agency-using advertisers. Shin and

Shin (2022) demonstrate that irrelevant advertising can stem from strategic decisions within the

ad agency-advertiser relationship, rather than simply technological imperfections. The study also

explores how contractual restrictions can lead to inefficiencies in ad delivery, and suggests that the

prevalence of irrelevant ads may decrease, but not disappear, as the number of impressions available

in the market increases.

Contribution

This paper contributes to the targeted advertising literature by introducing and analyzing two

features that have not been studied jointly: state-dependent data value, whereby the predictive

value of observable consumer data depends on an unobservable consumer state, and information

asymmetry across advertisers in access to that data. We show that the interaction of these two

features generates some unique predictions: in the common-value case, both publisher revenue

and conversion rates can increase simultaneously when data access is restricted, a result that

does not arise with symmetric advertisers. The paper also contributes to the online advertising
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auction literature by providing a unified analysis across different valuation structures (correlated

and independent) and different information settings (full, partial, and asymmetric), offering a

comprehensive account of how information asymmetries shape equilibrium market outcomes.

3 Model

3.1 General Setup

We consider n advertisers who compete in an ad auction for a user impression provided by a

publisher.

Users enter the market for one of two possible reasons on a given occasion: Reason 1 or Reason 2.

The visiting reason is idiosyncratic and cannot be directly observed by advertisers, but they can

assign a predictive probability based on available individual characteristics. For a user j with

characteristic data Dj , the probability the visit is due to Reason 1 is given by κ(Dj) := Pr[Reason 1 |

Dj ] = 1− Pr[Reason 2 | Dj ].

For example, a user j may visit a travel website either for a vacation or a business trip. Based

on prior market knowledge, a hotel advertiser can predict that the user’s reason to visit on this

particular occasion is a vacation with probability κ(Dj) and a business trip with probability 1 −

κ(Dj). Similarly, a user searching for restaurants might be planning a romantic date (Reason 1) or

catching up with a friend (Reason 2), and a user shopping online might be buying a gift (Reason 1) or

purchasing something for themselves (Reason 2). In each case, advertisers cannot observe the actual

reason on a particular occasion, so they assign probabilities based on their market knowledge.1

Not every advertiser i will be an equally good match for a user j with a particular visiting reason.

Given a user j with characteristic data Dj , if they see an ad from advertiser i, the probability of

conversion conditional on a Reason 1 visit is bi(Dj) := Pr[Conversion | Advertiser i, Dj , Reason 1]

and the probability of conversion conditional on a Reason 2 visit is ci(Dj) := Pr[Conversion |

Advertiser i, Dj , Reason 2], where bi(·), ci(·) are advertiser-specific functions from user data to a

value in [0, 1].

1The two-state structure is a deliberate modeling choice. While real-world consumer intent may be richer (a
traveler could be browsing, comparing prices, planning a future trip, or booking imminently), the essential feature we
aim to capture is that some observable data is relevant for predicting conversion under one intent but not another.
The binary structure is the simplest framework that generates this state-dependent data value.
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Given the above, for an advertiser i, the expected probability of conversion after showing an ad

to a user j of unknown Reason is

vij := Pr[Conversion | Advertiser i, Dj ] = κ(Dj) · bi(Dj) + (1− κ(Dj)) · ci(Dj).

For simplicity, we assume that each advertiser i is willing to pay up to a normalized amount of

1 for a conversion, so that their valuation (maximum willingness to pay) to show an ad to a user j

of unknown Reason equals vij .
2

We define the conversion rate of the auction as the expected probability that the winning

advertiser’s ad leads to a conversion, i.e., the expected value of vij for the winning advertiser

(where the expectation is taken over the randomness in advertiser valuations and bidding). This

measures the allocative efficiency of the auction: a higher conversion rate means the impression is

allocated to an advertiser who is, on average, a better match for the user.

3.2 Information Constraints and Asymmetry

Not all of the data Dj may be necessary to determine each model primitive. Let Aj ⊆ Dj denote

the subset on which the visit-reason probability κ depends, and let Bj , Cj ⊆ Dj denote the subsets

on which bi and ci depend, respectively (these subsets may overlap). We can then write κ(Aj),

bi(Bj), and ci(Cj) instead of κ(Dj), bi(Dj), and ci(Dj).

If all advertisers could compute their vij ’s, the auction would reduce to a standard complete-

information setting. However, not all advertisers may know their vij ’s, either because they lack

access to some necessary data or because they lack the ability to translate that data into accurate

conversion probability estimates.

The key asymmetry we study is that Aj and Cj are accessible to all advertisers, whereas Bj is

not. The assumption that the information asymmetry falls on Bj (the data needed to estimate the

Reason 1 conversion probability) rather than on Aj or Cj captures a common feature of online ad-

vertising markets: baseline conversion probabilities under the more common or “default” consumer

2This normalization assumes that advertisers differ in their conversion probabilities for a given user but not in
their willingness to pay per conversion. In practice, heterogeneity in per-conversion value (e.g., due to different profit
margins) is an important dimension of advertiser competition that could interact with the information structure we
study. For instance, if high-value advertisers systematically invest more in data infrastructure, the correlation between
information status and per-conversion value would be relevant. We abstract from this interaction to isolate the effects
of information asymmetry on conversion-probability-based valuations. The model can be extended by replacing the
range [0, 1] of the functions bi(·), ci(·) with advertiser-specific ranges [0, ai], representing expected profits rather than
conversion probabilities; we leave this generalization for future work.
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state can often be estimated from widely available data (e.g., the destination of a flight booking,

which is visible to all advertisers on the page), whereas predicting conversion under a less common

or more nuanced state requires proprietary data (e.g., the user’s price sensitivity from browsing

history) or more sophisticated modeling capabilities. Continuing with the vacation-versus-business-

trip example, a business traveler may be price sensitive as a person, but in the context of a business

trip their price sensitivity may be irrelevant due to employer reimbursement. Therefore, bi(Bj) can

depend on price sensitivity data, while κ(Aj) and ci(Cj) do not.3

For a specific user j, we call an advertiser who can utilize Aj , Bj , and Cj an informed advertiser,

and an advertiser who can utilize only Aj and Cj a constrained advertiser. From now on, we focus

on a specific user of unknown Reason and simplify notation by dropping the index j: we write κ,

bi, and ci in place of κ(Aj), bi(Bj), and ci(Cj), and vi in place of vij (keeping in mind that these

values can vary across users). An informed advertiser knows their vi = κ · bi + (1− κ) · ci, while a

constrained advertiser can only compute their expected valuation EB[vi] = κ · EB[bi] + (1− κ) · ci.

Therefore, an informed advertiser bids based on vi and a constrained advertiser bids based on

EB[vi].

3.3 Information Settings, Distributional Assumptions, and Auction Format

To study the effects of information asymmetry on the auction outcomes, we consider the following

three information settings:

� Full Information (FI): All n advertisers are informed.

� Information Asymmetry (IA): n1 advertisers are informed and n2 advertisers are con-

strained (where n1, n2 > 0 and n1 + n2 = n).

� Partial Information (PI): All n advertisers are constrained.

An Information-Asymmetry market can become a Partial-Information market if the publisher re-

stricts data access for informed advertisers (e.g., by disabling third-party cookies so that Bj becomes

unavailable). Conversely, it can become a Full-Information market if constrained advertisers gain

the ability to estimate bi. We compare outcomes across these three settings to determine when

such transitions are beneficial.

3Alternatively, Bj may represent data in a format that requires specialized processing (e.g., unstructured browsing
logs), while Aj and Cj correspond to structured, publicly available signals.
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As additional terminology, when an advertiser bids based on their actual vi (using both bi and

ci), we call this full targeting. When an advertiser bids based on EB[vi] (using only ci), we call this

partial targeting. Disabling full targeting (e.g., by removing third-party cookie access) corresponds

to moving from Information Asymmetry to Partial Information.

Correlation structure of b-values. The values b1, b2, . . . , bn of the different advertisers can

be correlated or independent. For instance, a user’s low price sensitivity might indicate a high bi

for all hotel advertisers, whereas certain past brand preferences might indicate a high bi for some

advertisers and a low bi for others. We consider two extreme cases:

� Common-value case (CV): b1 = b2 = . . . = bn =: b, where b is drawn from a distribution

with CDF F .

� Independent-values case (IV): b1, b2, . . . , bn are i.i.d. draws from a distribution with CDF

F .

For parsimony and analytical tractability, we model F as a Bernoulli distribution on {0, 1}, with

Pr[bi = 1] = p for some known probability p ∈ [0, 1].

Correlation structure of c-values. The values c1, c2, . . . , cn could also be identical or indepen-

dent. Because the ci’s are known to all advertisers, the case where they are all identical is less

interesting (there is no private information in this component). We defer the common c-value case

to Appendix C and focus on independent c-values in the main analysis:

� The random variables ci are i.i.d. draws from a distribution with CDF G.

We model G as a uniform distribution on [0, 1] in the main exposition.4

Auction format. The impression is sold using a second-price auction run by the publisher.

Advertisers bid based on their expectations about vi, and the highest bidder wins and pays the

second-highest bid.5

4This is for expositional clarity, but our results hold for arbitrary distributions G, as we demonstrate in Sec-
tions 5 and 6.

5In practice, first-price auctions have become the dominant format in programmatic advertising (see e.g.,
Despotakis et al., 2021). We use a second-price auction for analytical tractability, but our main results are ro-
bust to alternative selling mechanisms. In particular, Lemma 4 shows that the conversion rate result holds for a wide
class of mechanisms, including first-price auctions and multiple parallel auctions. Proposition 12 in Appendix B.3
further demonstrates that the revenue result also holds under first-price auctions.
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Notation. For each dependence setting σ ∈ {CV, IV} (common-value, independent-values) and

each information setting τ ∈ {FI, IA,PI}, we denote by W σ
τ and V σ

τ the publisher’s expected

revenue and the expected conversion rate, respectively. Similarly, Eσ
τ and Dσ

τ denote the informed

advertiser’s and the constrained advertiser’s expected payoffs, respectively. Table 1 summarizes all

notation.

The remainder of the paper is structured as follows. In Section 4, we present the main results

and insights with n = 2 advertisers. Sections 5 and 6 then establish robustness in the general setting

with any number of advertisers and arbitrary distributions G. Section 5 provides analytical results

where closed-form proofs are feasible despite the lack of a closed-form bidding function.6 Section 6

establishes the existence of a pure symmetric equilibrium for the general model7 and numerically

approximates the bidding function for general examples. All proofs are in Appendices A.1 and B.1,

and a summary of key formulas appears in Appendix B.2. Appendix B.3 analyzes the first-price

auction variant, and Appendix C treats the common c-value case.

4 Analysis and Main Insights

In this section, we start by presenting the results and intuitions for two advertisers: one informed

advertiser and one constrained advertiser. In subsection 4.1 we consider the common-value case

(CV) and in subsection 4.2 we consider the independent-values case (IV). In subsection 4.3 we

compare and discuss the differences between the common-value and independent-values cases in

terms of publisher’s revenue, conversion rates, and advertisers’ payoffs.

4.1 Common-value case

Under the common-value case in the PI and FI settings, both advertisers will have the same

information, therefore, in the second-price auction they will truthfully bid their valuation (in FI)

or their expected valuation (in PI, where they do not know the actual valuation) (see e.g., Krishna,

2009). However, in the IA setting the informed advertiser is more informed than the constrained

advertiser. As a consequence of this asymmetry, the informed advertiser will still bid their true

6The bidding function of constrained advertisers is the solution to a differential equation that does not always
admit a closed-form solution (see Eq. (4) and the proof of Lemma 3).

7Specifically, we show that a pure symmetric equilibrium bidding strategy exists for constrained advertisers under
the common-value IA setting.
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Information Settings

FI Full Information. All n advertisers are informed.
IA Information Asymmetry. n1 advertisers are informed and n2 are constrained

(n1, n2 > 0, n = n1 + n2).
PI Partial Information. All n advertisers are constrained.

b-Value Dependence Settings

CV Common Value. The b-value is the same for all advertisers.
IV Independent Values. The advertisers’ b-values are independent.

Market Metrics
(for a b-value dependence setting σ ∈ {CV, IV} and an information setting τ ∈ {FI, IA,PI})

V σ
τ Expected conversion rate (the expected vi of the winning advertiser).

W σ
τ Publisher’s expected revenue.

Eσ
τ Informed advertiser’s expected payoff.

Dσ
τ Constrained advertiser’s expected payoff.

Parameters

κ The probability a user visits for Reason 1.
p b-probability. The probability that the b-value bi is high for an advertiser.
G c-distribution. The CDF of the distribution of the c-value ci.

Others

vi = κbi+(1−κ)ci Advertiser i’s valuation (equivalent to the advertiser’s expected conversion
probability).

β(ci) Equilibrium bidding function of a constrained advertiser under the common-
value IA setting, where the constrained advertiser does not know bi but knows
ci.

Table 1: Summary of Notation
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valuation, but the constrained advertiser might not always do that. We start off with Lemma 1 on

the bidding function of the constrained advertiser.

Lemma 1 (Advertisers’ bidding behavior). Under the common-value IA setting, the informed

advertiser bids their true valuation, while the constrained advertiser with a c-value c ∈ [0, 1] bids:

β(c) :=


(1− κ)c, if 0 ≤ c < min

{ √
1−p√

1−p+
√
p
,
√
1−pκ
1−κ

}
,

κp+ (1− κ)c, if min
{ √

1−p√
1−p+

√
p
,
√
1−pκ
1−κ

}
≤ c < max

{ √
1−p√

1−p+
√
p
, 1−

√
pκ

1−κ

}
,

κ+ (1− κ)c, if max
{ √

1−p√
1−p+

√
p
, 1−

√
pκ

1−κ

}
≤ c ≤ 1.

(1)

The intuition behind Lemma 1 is the following. If the c-value c of the constrained advertiser

is relatively low, they bid as if the common b-value b is 0. This is because if they assume some

other value b = x > 0, they risk overpaying for the impression in the case where b = 0 and

(1−κ) · c < (1−κ) · c′ < κ ·x+(1−κ) · c (where c′ is the c-value of the informed advertiser), where

they end up with a negative payoff of (1 − κ) · (c − c′). When c < min
{ √

1−p√
1−p+

√
p
,
√
1−pκ
1−κ

}
, this

risk is too high to take. However, when the c-value c is high
(
c ≥ max

{ √
1−p√

1−p+
√
p
, 1−

√
pκ

1−κ

})
, it is

very likely that c > c′, therefore they are not afraid to bid as if b = 1, because they have a higher

incentive to win and avoid losing impressions with good b-values. For medium values of c, both

the risks of overpaying for a bad impression and losing a good impression are too high to make any

assumption about b, therefore the advertiser simply bids their expected valuation (note that the

expected value of b is p).

Note that as κ increases, i.e. as the b-value becomes more important, the middle interval

of c where the constrained advertiser bids their expected valuation shrinks, and for κ ≥ 1/2 it

disappears, i.e. the advertiser either underbids or overbids depending on c (see also Figure 1 where

the bidding function is shown for different values of κ). Since the role of information asymmetry is

more important for larger values of κ and it is where the more interesting results occur, for some

of the results we will focus on the case where κ ≥ 1/2.

Note also that when the value of p is low, the region of c where the underbidding occurs is wider

compared to the overbidding region, but the amount of underbidding (κp) is smaller compared to

the amount of overbidding (κ(1 − p)). On the other hand, when p is high, overbidding is more

common but the amount of overbidding is lower. This is illustrated in Figure 2.
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Figure 1: Bidding function of the constrained advertiser for different values of κ (solid line for
κ = 0.3, dashed line for κ = 0.5, and dotted line for κ = 0.9), n1 = n2 = 1, p = 1/2, and G(x) = x.
Notice that for large c-values c, as κ increases there is more overbidding, while for small c-values
c, as κ increases there is more underbidding.

In Lemma 2 of Section 5 we show a generalization of Lemma 1 for any n1 ≥ 1, any distribution

G, p ∈ [0, 1], and κ ≥ 1/2. Lemma 3 in Section 6 is a further generalization for the more general

case with n2 ≥ 1 (where the bidding function does not always have a closed-form expression). The

same intuition as for Lemma 1 applies to Lemma 2 and Lemma 3 as well.

Bid β(c)

Expected valuation

0.2 0.4 0.6 0.8 1.0
c

0.2

0.4

0.6

0.8

1.0

p = 1/5

(a) p = 1/5.

Bid β(c)

Expected valuation

0.2 0.4 0.6 0.8 1.0
c

0.2

0.4

0.6

0.8

1.0

p = 4/5

(b) p = 4/5.

Figure 2: Bidding function of the constrained advertiser (solid line) compared to their expected
valuation (dashed line), for different values of p, n1 = n2 = 1, κ = 1/2, and G(x) = x. Notice that
for small values of p (left) the region of overbidding is smaller than the region of underbidding, but
the amount of overbidding (κ(1 − p)) is larger than the amount of underbidding (κp). For large
values of p (right) the opposite happens.

The bidding function of Lemma 1 sometimes results in an inefficient market under the IA infor-

mation setting. More specifically, both the underbidding and the overbidding can result in lower

conversion rate compared to the PI setting (where every advertiser bids their expected valuation).
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This is illustrated in Example 1.

Example 1 (Inefficiency of non-truthful bidding). Let κ = p = 1/2. Then the constrained ad-

vertiser bids c/2 if c < 1/2 and (1 + c)/2 if c ≥ 1/2, where c is their c-value. The following two

examples illustrate the inefficiency caused by the non-truthful bidding of the constrained advertiser.

They show that both underbidding and overbidding can result in lower conversion rates.

� Inefficiency of underbidding

(IA setting) Suppose that the common b-value is high, i.e. b = 1, the informed advertiser

has c-value c1 = 1/6, and the constrained advertiser has c-value c2 = 1/3. The actual

valuations of the two advertisers are v1 = (1 + c1)/2 = 7/12 for the informed advertiser and

v2 = (1 + c2)/2 = 8/12 for the constrained advertiser. The informed advertiser bids their

actual valuation β1 = 7/12, but the constrained advertiser underbids, i.e. β2 = c2/2 = 2/12.

As a result, the constrained advertiser loses the auction even though they have a higher

valuation. Thus, the conversion rate ends up being lower than what it could be in a more

efficient auction.

(PI setting) If none of the advertisers knew the b-value b, then both advertisers would bid

their expected valuations, i.e. β1 = 1/4 + c1/2 = 4/12 and β2 = 1/4 + c2/2 = 5/12. Thus,

the advertiser with the highest valuation would win, leading to a higher conversion rate.

� Inefficiency of overbidding

(IA setting) Suppose that the common b-value is low, i.e. b = 0, the informed advertiser has

c-value c1 = 5/6, and the constrained advertiser has c-value c2 = 2/3. The actual valuations

of the two advertisers are v1 = c1/2 = 5/12 for the informed advertiser and v2 = c2/2 = 4/12

for the constrained advertiser. The informed advertiser bids their actual valuation β1 = 5/12,

but the constrained advertiser overbids, i.e. β2 = (1 + c2)/2 = 10/12. As a result, the

constrained advertiser wins the auction even though they have a lower valuation. Thus, the

conversion rate ends up being lower than what it could be in a more efficient auction.

(PI setting) If none of the advertisers knew the b-value b, then both advertisers would bid

their expected valuations, i.e. β1 = 1/4 + c1/2 = 8/12 and β2 = 1/4 + c2/2 = 7/12. Thus,

the advertiser with the highest valuation would win, leading to a higher conversion rate.

15



As we can see in Example 1, there are cases where under the IA setting the advertiser with the

highest valuation does not win, either due to the underbidding or due to the overbidding of the

constrained advertiser. In contrast, under the PI setting, the highest-valuation advertiser always

wins, because every bidder bids their expected valuation, and the winner is determined based on

the c-values. This results in a higher conversion rate for the PI setting, as shown in Proposition 1.

For the publisher’s revenue, things are less clear. On the one hand, the underbidding that occurs

under IA can hurt the publisher, but on the other hand, the overbidding can benefit the publisher

because it can increase the prices. Surprisingly, the opposite can happen too; underbidding can

sometimes increase publisher’s revenue, and overbidding can decrease it, as illustrated in Example 2.

Example 2 (The effects of non-truthful bidding on revenue). Let κ = 1/2 and p = 1/3. Then

the constrained advertiser bids c/2 if c < 2 −
√
2 and (1 + c)/2 if c ≥ 2 −

√
2, where c is their c-

value. The following two examples illustrate that, counter-intuitively, underbidding can sometimes

increase publisher’s revenue, and overbidding can sometimes decrease it.

� Underbidding can increase publisher’s revenue

(IA setting) Suppose that the common b-value is high, i.e. b = 1, the informed advertiser

has c-value c1 = 1/12, and the constrained advertiser has c-value c2 = 1/2. The actual

valuations of the two advertisers are v1 = (1+ c1)/2 = 13/24 for the informed advertiser and

v2 = (1 + c2)/2 = 18/24 for the constrained advertiser. The informed advertiser bids their

actual valuation β1 = 13/24, but the constrained advertiser underbids, i.e. β2 = c2/2 = 6/24.

The informed advertiser wins and pays β2, therefore, the publisher’s revenue is 6/24.

(PI setting) If none of the advertisers knew the b-value b, then both advertisers would bid

their expected valuations, i.e. β1 = 1/6 + c1/2 = 5/24 and β2 = 1/6 + c2/2 = 10/24. Then

the constrained advertiser would win and pay β1. Therefore, publisher’s revenue would be

5/24, which is lower than the revenue under the IA setting.

� Overbidding can decrease publisher’s revenue

(IA setting) Suppose that the common b-value is low, i.e. b = 0, the informed advertiser

has c-value c1 = 5/6, and the constrained advertiser has c-value c2 = 3/4. The actual

valuations of the two advertisers are v1 = c1/2 = 10/24 for the informed advertiser and

v2 = c2/2 = 9/24 for the constrained advertiser. The informed advertiser bids their actual
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valuation β1 = 10/24, but the constrained advertiser overbids, i.e. β2 = (1 + c2)/2 = 21/24.

The constrained advertiser wins and pays β1, therefore, publisher’s revenue is 10/24.

(PI setting) If none of the advertisers knew the b-value b, then both advertisers would bid

their expected valuations, i.e. β1 = 1/6 + c1/2 = 14/24 and β2 = 1/6 + c2/2 = 13/24. Then

the informed advertiser would win and pay β2. Therefore, publisher’s revenue would be 13/24,

which is higher than the revenue under the IA setting.

Despite valuation instances like those in Example 2, in Proposition 1 we show that the overall

publisher’s expected revenue is higher under the PI setting.

Proposition 1 (Common-value and information asymmetry). Under the common-b-value setting,

the publisher can improve both the conversion rate and the expected revenue if it hides the b-data

from all the advertisers. In other words, we have V CV
IA ≤ V CV

PI and W CV
IA ≤ W CV

PI .

Proposition 1 shows that if the publisher has some useful information about a consumer but

cannot provide this information to all advertisers, it can achieve a higher conversion rate by hid-

ing the information from everyone rather than giving it only to some advertisers. As an added

benefit, the publisher can also simultaneously increase its revenue by hiding this information for

all advertisers. The main reason this happens is the inefficiency of the non-truthful bidding of the

constrained advertiser under the IA setting, as illustrated in Example 1.

Given the result of Proposition 1, one may wonder if the same can happen when there is no

information asymmetry between the advertisers. In other words, if all advertisers have access to the

same information, is it still possible that less information can simultaneously increase the conversion

rate and the publisher’s revenue? In Proposition 2 we show that this cannot happen under the

common-b-value setting.

Proposition 2 (Common-value and full information). Under the common-b-value setting, both the

conversion rate and the expected revenue remain unchanged when all advertisers have access to the

same information (i.e., when all advertisers are informed or all advertisers are constrained). In

other words, it holds that V CV
FI = V CV

PI and W CV
FI = W CV

PI .

The equality V CV
FI = V CV

PI is relatively easy to see, whereas the equality W CV
FI = W CV

PI is less

straightforward. Under the common-value setting, since all advertisers have the same b-value,
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when all have the same information, the b-part of their bids is the same for everyone; therefore,

the winner of the auction is purely determined by their c-values in both the FI and the PI settings.

As a result, the conversion rate remains unchanged.

For the revenue, when the common b-value is high, publisher’s revenue is higher under the PI

setting because every advertiser bids above their actual valuation. In contrast, when the common

b-value is low, the publisher’s revenue is lower under the PI setting because every advertiser bids

below their actual valuation. Due to the linearity of the expectation, the average revenue remains

the same in the two information settings.

Note that as we move from the FI to the IA and then to the PI information setting, the overall

information to the advertisers is reduced. As a result, the inequality W CV
FI ≥ W CV

IA agrees with the

linkage principle (Milgrom and Weber, 1982) which would suggest that revealing information is

better for the revenue, but the inequality W CV
IA ≤ W CV

PI violates the principle which happens due to

the information asymmetry.8

In this section, we have seen that under the common-value setting there is a non-monotonic

relationship between the amount of information available to the advertisers and the efficiency of

the auction; as we reduce the information, efficiency (i.e. the conversion rate) first goes down and

then goes up again. We have also seen that a similar effect occurs for the publisher’s revenue. In

Section 4.2 we show that this is no longer true when the b-values are independent.

4.2 Independent-values case

In contrast to the common-value case, when the b-values of advertisers are independent, all adver-

tisers will bid truthfully according to their (expected) valuation.

In the independent-values case, the intuitive result that less information to the advertisers

decreases the conversion rate now holds. This is still not true for every valuation instance, as

illustrated in Example 3, but it is true for the expected conversion rates, as shown in Proposition 3.

Example 3. Let κ = p = 1/2.

(IA setting) Suppose that the informed advertiser has a b-value b1 = 1 and a c-value c1 = 3/8,

and the constrained advertiser has a b-value b2 = 1 and a c-value c2 = 5/8. The actual valuations

8For some other cases where the principle is violated for different reasons, see e.g. Perry and Reny (1999); Fang
and Parreiras (2003); Krishna (2009); Despotakis et al. (2017).
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of the two advertisers are v1 = (1+c1)/2 = 11/16 for the informed advertiser and v2 = (1+c2)/2 =

13/16 for the constrained advertiser. The informed advertiser bids their actual valuation β1 =

11/16, but the constrained advertiser bids their expected valuation, i.e. β2 = 1/4 + c2/2 = 9/16.

As a result, the constrained advertiser loses the auction even though they have higher valuation.

(PI setting) If none of the advertisers knew their b-values bi, then both advertisers would bid

their expected valuations, i.e. β1 = 1/4 + c1/2 = 7/16 and β2 = 1/4 + c2/2 = 9/16. Thus, the

advertiser with the highest valuation would win, leading to a higher conversion rate than the IA

setting.

Despite valuation instances like those in Example 3, in Proposition 3 we show that the overall

expected conversion rate increases with more information, under the independent-values setting.

Proposition 3 (Independent-values, conversion rates). Under the independent-b-values setting,

the less information advertisers have overall, the lower the conversion rate is. More specifically,

V IV
FI ≥ V IV

IA ≥ V IV
PI .

Proposition 3 shows that the dependence between the b-values of different advertisers is an

essential element for the result of Proposition 1, since for independent values it no longer holds.

With respect to the publisher’s revenue, the result is less intuitive. Proposition 4 shows that as

we provide more information in general to advertisers, publisher revenue decreases.

Proposition 4 (Independent-values, publisher’s revenues). Under the independent-b-values setting,

the less information advertisers have overall, the higher publisher’s revenue is. More specifically,

we have W IV
FI ≤ W IV

IA ≤ W IV
PI .

9

The result of Proposition 4 is sensitive to the number of advertisers (in contrast to the previous

results that hold for arbitrary number of advertisers; see Section 5). What happens in general

is that, for a small number of advertisers, less information is better, but for a large number of

advertisers, more information is better. This is due to a version of the market-thinning effect

(Levin and Milgrom, 2010). When there are few advertisers in the market, as they become more

informed their values spread out, and there is less competition in the high valuations. But as

9We want to highlight that this result holds for a low number of advertisers (e.g. two, like in the main model),
but unlike the other results it does not always generalize for more advertisers. In Section 5.2 we consider the general
case and discuss the details on this.
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the number of advertisers becomes larger and the competition increases, more information should

improve publisher’s revenue. More specifically, when n1 = n2 = 1 (i.e. there is one advertiser of

each type) it holds that more information decreases revenue, but as n1 and n2 increase, at some

point this stops being true. The exact threshold for the number of advertisers where monotonicity

changes depends on the value of p, with a lower p increasing the threshold, the weight κ, with

higher κ increasing the threshold, and the c-distribution G (see Proposition 9 and Figure 7 for

more details).10

4.3 Comparison of the b-Value Settings and Advertisers’ Payoffs

Now that we have the results for the simple model with two advertisers, we can compare the two

b-value settings (the common-value and the independent-values cases) to each other in terms of

their consequences for the publisher’s revenue, conversion rates, and advertisers’ payoffs.

We start with the publisher’s revenue in Figure 3. In the two plots of Figure 3, we see the

revenue under the three different information settings as the b-probability p changes in [0, 1]. In

the common-value case in Figure 3(a), we can see that starting from the IA setting and eliminating

the information asymmetry by going towards FI or PI, the publisher’s revenue increases. This is

due to the underbidding and overbidding behavior that occurs in IA, as discussed in Section 4.1.

In contrast to Figure 3(a), in the independent-values case in Figure 3(b) we observe a monotonic

change in revenue. As we add information to the market (moving from PI to IA and then to FI),

publisher’s revenue goes down, as described in Proposition 4.

Next, we move to the conversion rates in Figure 4. What we observe in Figure 4(a) is one of our

main findings. What happens here is that in the IA setting, according to Lemma 1, a constrained

advertiser with high valuation often bids conservatively and loses to an informed advertiser with a

lower valuation. In addition, a constrained advertiser with low valuation often bids aggressively and

wins against an informed advertiser with a higher valuation. Both of these bidding behaviors create

an inefficient auction because an advertiser with lower valuation wins the consumer’s impression,

resulting in a lower conversion rate compared to the settings without information asymmetry.

Often in the literature, we see that in markets with thin competition when the publisher’s rev-

10It is interesting to note that there are also cases where the expected revenue is non-monotonic with respect to
the total amount of information that is available to the advertisers. In other words, all six different orderings of W IV

FI ,
W IV

IA , and W IV
PI are possible under different conditions (see Figure 8).
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(a) Common-value case.
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(b) Independent-values case.

Figure 3: Publisher’s revenue under the different information settings for different values of p ∈
[0, 1], n1 = n2 = 1, κ = 1/2, and G(x) = x.

enue goes down (Figure 3(b)), conversion rate (Figure 4(b)) and the advertisers’ payoffs (Figure 6)

go up as we add information to the market (moving from PI to IA and then to FI). Here, we verify

this for our model. However, Proposition 1 states that this is not the case when the b-values are

correlated. In fact, both publisher revenue and conversion rate can move in the same direction, as

we observe in Figures 3(a) and 4(a) in contrast to Figures 3(b) and 4(b).
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(a) Common-value case.
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(b) Independent-values case.

Figure 4: Conversion rate under the different information settings as a function of p ∈ [0, 1], for
n1 = n2 = 1, κ = 1/2, and G(x) = x.

Regarding advertisers’ payoffs, in Figure 5 we can see that in the common-value case they

change non-monotonically both in terms of the information that is available to the advertisers and

in terms of p. First, in Figure 5(a), we see that the constrained advertiser’s payoff decreases slightly

in the IA setting compared to the FI and PI settings, while in Figure 5(b) we see that the informed
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advertiser’s payoff increases significantly. This is expected because the informed advertiser has a

strong competitive advantage in the IA setting, while in the FI and PI settings both advertisers are

similar. Second, in terms of p, we see that in the IA setting, the constrained advertiser’s payoff is

minimum for p = 1/2 where the uncertainty about the common b-value is maximized. However, the

informed advertiser’s payoff is maximized for a value p > 1/2, which gives the informed advertiser a

higher probability of a high valuation in addition to the advantageous uncertainty of the constrained

advertiser.
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(a) Constrained advertiser.
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(b) Informed advertiser.

Figure 5: Advertisers’ payoffs in the common-value case under the different information settings
for different values of p ∈ [0, 1], n1 = n2 = 1, κ = 1/2, and G(x) = x.

In contrast to Figure 5, in the independent-values case in Figure 6 we see that both payoffs go

down monotonically as we remove information from the market. Furthermore, we see that both

types of advertisers have identical payoffs in all settings under IV, including the IA setting where the

informed advertiser would normally be expected to have an advantage. Although the constrained

advertiser has more fluctuations in their payoff in IA under different realizations of the valuations,

their average payoff is the same as the informed advertiser’s one, because the advantage of extra

information is not that big when the valuations are independent. This perhaps surprising result is

independent of any distributional assumptions, but it is a consequence of the fact that there are

only two advertisers in the simple version of the model. In Section 6 we discuss the more general

case, which is more intuitive in the sense that the informed advertiser has a higher payoff under the

IA setting, but still interesting in terms of how the payoff changes as a function of p (see Figure 10).
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Figure 6: Advertisers’ payoffs in the independent-values case under the different information set-
tings for different values of p ∈ [0, 1], n1 = n2 = 1, κ = 1/2, and G(x) = x.

5 Generalizations

In this section, we consider the more general version of the main model, for an arbitrary c-

distribution G (instead of uniform) and more than two advertisers. More specifically, there are

n ≥ 2 advertisers competing for the impression, a subset of n1 ≤ n of them are informed advertis-

ers, and the remaining n2 = n − n1 are constrained advertisers. For the common-value case, the

results shown in Section 4.1 extend to the more general setting; this is discussed in subsection 5.1.

In the independent-values case there are some interesting differences when we increase the number

of advertisers, which we discuss in subsection 5.2.

5.1 Common-value case

Lemma 2 is an analog of Lemma 1 for arbitrary distributions G and more than one informed

advertisers.

Lemma 2 (Advertisers’ bidding behavior). For any distribution G, any n1 ≥ 1, n2 = 1, and

κ ≥ 1/2, under the common-value IA setting, all the informed advertisers bid their true valuations

while there exists c(p) ∈ [0, 1] such that the constrained advertiser’s bidding function is

β(c) :=


(1− κ)c, if 0 ≤ c < c(p),

κ+ (1− κ)c, if c(p) ≤ c < 1.
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Moreover, c is independent of κ, and it is a continuously differentiable decreasing function in p,

with c(0) = 1, c(1/2) = n1E[c ·G(c)n1−1], and c(1) = 0.

Like in Lemma 1, we see that the constrained advertiser sometimes underbids, for low values

of c, and sometimes overbids, for high values of c. Also, as p increases, they overbid more than

they underbid. Due to this non-truthful bidding, similar results to those in Section 4.1 continue to

hold for n1 > 1.11 Propositions 5 and 6 generalize the results of Propositions 1 and 2 for arbitrary

distributions G. Proposition 5 is shown here for any number of advertisers n1, n2 ≥ 1. We further

check the robustness of Proposition 6 for n1, n2 > 1 in Section 6.

Proposition 5. For any distribution G, any n1, n2 ≥ 1, and κ ∈ [0, 1], under the common-value

case, we have that V CV
IA ≤ V CV

FI = V CV
PI .

Proposition 6. For any distribution G, n1 = n2 = 1, and κ ≥ 1/2, under the common-value case,

we have that W CV
IA ≤ W CV

FI = W CV
PI .

5.2 Independent-values case

Propositions 7 and 8 generalize the results of Propositions 3 and 4. The intuition for Proposition 7

is similar to that in the simple model version (as the amount of information available to advertisers

decreases, the efficiency of the auction decreases).

Proposition 7. For any distribution G, any n1, n2 ≥ 1, and κ ∈ [0, 1], under the independent-

values case, we have that V IV
FI ≥ V IV

IA ≥ V IV
PI .

Proposition 8. For any distribution G, n1 = n2 = 1, and κ ∈ [0, 1], under the independent-values

case, we have that W IV
FI ≤ W IV

IA ≤ W IV
PI .

In contrast to the common-value setting, under independent b-values, publisher revenue be-

haves somewhat differently in general (for n ≥ 2) than what we showed in Propositions 4 and 8.

Proposition 9 describes the general phenomenon.

Proposition 9. For any distribution G and κ ≥ 1/2, under the independent-values case, we have

W IV
FI ≤ W IV

PI for sufficiently small n, and W IV
FI > W IV

PI for sufficiently large n. The threshold for n

where the inequality is reversed depends on p, κ, and G.

11Lemma 3 in Section 6 generalizes this result for n2 > 1 as well.
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As described in Section 4.2, the market-thinning effect that occurs under the IV setting makes

hiding information from advertisers beneficial for the publisher’s revenue when the number of

advertisers is low. However, when there is a sufficiently large number of advertisers, revealing more

information increases revenue.

The threshold for the number of advertisers n where the inequality in Proposition 9 reverses

depends on the parameters p and κ, and the distribution G. Figure 7 illustrates this. In Figure 7(a)

we see that as p decreases and as κ increases, we need more and more advertisers to make the full-

information setting give higher revenue than the partial-information setting (i.e. W IV
FI ≥ W IV

PI ). In

Figure 7(b) we see the thresholds for some examples of different Beta distributions for various

parameters α and β. Generally, we observe that c-distributions G with higher average have higher

threshold. Also, if the average is low, a lower variance gives a higher threshold, but when the

variance is high, a higher variance gives a higher threshold.
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(a) G(x) = x, various p and κ.
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(b) G ∼ Beta(α, β), p = 1/20, κ = 1/2.

Figure 7: Minimum number of advertisers n such that W IV
FI ≥ W IV

PI for various values of p, κ, and
different c-distributions G.

Given Proposition 9, a natural question to ask is howW IV
IA (the revenue under independent values

with information asymmetry) compares to W IV
FI and W IV

PI under different conditions. The intuition

behind Proposition 9 potentially suggests that W IV
FI ≤ W IV

IA ≤ W IV
PI for low n and W IV

FI ≥ W IV
IA ≥ W IV

PI

for high n. Surprisingly, this is not always the case. In fact, as illustrated in Figure 8, all six different

orderings between the revenues W IV
FI , W

IV
IA , and W IV

PI are possible under different conditions. The

information asymmetry between advertisers adds an additional element of complexity that the

25



1
2

3

4

5

6

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

κ

1 WFI
IV <WIA

IV <WPI
IV

2 WPI
IV <WIA

IV <WFI
IV

3 WFI
IV <WPI

IV <WIA
IV

4 WIA
IV <WFI

IV <WPI
IV

5 WIA
IV <WPI

IV <WFI
IV

6 WPI
IV <WFI

IV <WIA
IV

Figure 8: Publisher’s revenues comparisons between different information settings under indepen-
dent b-values, for various values of p and κ, G(x) = x, and n1 = n2 = 2.

market-thinning effect alone is not sufficient to explain.

The intuition behind Figure 8 is as follows. In Proposition 9 we saw that a low n makes hiding

information from advertisers beneficial for the publisher, due to a thinner market. For a similar

reason, a low p also makes hiding information beneficial. This is because when p is low, there is a low

probability that the second highest bidder at the auction will have a b-value bi = 1, which means

that the clearing price will most likely be of the form (1−κ)ci if all advertisers know their b-values.

Thus, when p is low, the publisher prefers to hide information from as many advertisers as possible

to make them bid their expected valuation κp+ (1− κ)ci instead of their actual valuation. On the

contrary, when p is high, the publisher prefers to reveal the b-data to as many advertisers as possible

so that they can bid their (likely high) actual valuation. In other words, when p is low we have

that W IV
FI < W IV

IA < W IV
PI (Region 1) and when p is high we have that W IV

FI > W IV
IA > W IV

PI (Region 2).

This also explains why in Regions 1, 3, and 4 it is W IV
FI < W IV

PI , while in Regions 2, 5, and 6 it is

W IV
FI > W IV

PI .

To understand why the IA setting generates higher revenue than the other two information

settings in Regions 3 and 6 where p is medium and κ is high, let us consider the extreme case

where κ = 1. In this extreme case, the valuations of the advertisers are just bi, without a c-part.
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Under the IA setting, the informed advertisers will bid their actual values bi, while the constrained

advertisers will bid their expected valuation which is just p. When p is high, there is a high chance

that there will be at least two advertisers with high bi’s, so the publisher wants the advertisers to

learn their bi’s to have a high chance of getting a clearing price of 1 (Region 2). When p is low, it is

less likely that there will be at least two bi’s that are high, so the publisher prefers if the advertisers

bid p instead of their bi which is more likely 0. However, having many advertisers bidding p has no

additional benefit compared to just two advertisers bidding p, since the clearing price will be p in

both cases. Therefore, the optimal revenue for the publisher when p is low is achieved when there

is information asymmetry, where the publisher guarantees a clearing price of at least p from the

constrained advertisers and there is also a (small) chance of something higher from the informed

advertisers (Regions 3 and 6).

Figure 9: Publisher’s revenues for the different information settings under independent b-values,
for n = 8 advertisers, n1 ∈ [0, n], n2 = n − n1, κ = 1/2, G(x) = x, and p ∈ {0.01, 0.02, 0.03, 0.3}
(from left to right).

Finally, when κ is low, the importance of the b-value on the advertisers’ valuations is low.

The c-part of the valuations dominates in determining the winner. As a result, the benefit of

information asymmetry described above, where it is good for the publisher to have both informed

and constrained advertisers, is not essential anymore since the c-values are known by both. In

Regions 4 and 5, the IA setting has worse revenue than the other two settings because of a third

effect.

Under the IA setting, there are two groups of advertisers, n1 informed advertisers and n2

constrained advertisers. If we fix the total number of advertisers n = n1 + n2, then we can think

of the FI and the PI information settings as extreme versions of the IA setting. More specifically,

FI is like IA with (n1, n2) = (n, 0) and PI is like IA with (n1, n2) = (0, n). With that view in

mind, to understand how W IV
FI , W

IV
IA , and W IV

PI compare to each other, it is useful to look at the

function W IV
IA (n1, n2) = W IV

IA (n1, n − n1) as n1 goes from 0 to n, while everything else is fixed.
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In Figure 9 we can see some examples of this function (represented by the dashed line) for four

different values of p, starting from a low p in the first plot on the left and increasing it towards

the right (we also consider n = 8 advertisers to make the effect clearer). For n1 = 0 the function

gives the revenue under the PI setting (dotted line) and for n1 = n it gives the revenue under the

FI setting (solid line). We see that for low p this function is decreasing and it gradually becomes

increasing as p increases. While it transitions from decreasing to increasing, at some point, for

medium values of p it becomes non-monotone (first decreasing and then increasing). This is the

point where the IA setting can give lower revenue for the publisher than both the FI and the PI

settings (Regions 4 and 5 in Figure 8).

The explanation for this is as follows. As n1 increases from 0 to n, what we do is we move ad-

vertisers one by one from the group of constrained advertisers to the group of informed advertisers.

The average of the bids in both groups is the same; therefore, the average bid is not affected as

we move advertisers. However, what changes is the variance of the distribution of the bids. More

specifically, the bids of the constrained advertisers are more concentrated around the mean, while

the bids of the informed advertisers are more spread out. When we move the first few advertisers

from the constrained group to the informed group, we make the bid distribution of the constrained

group slightly worse. However, the advertiser who determines the clearing price of the overall auc-

tion is still more likely in the constrained group, as it has significantly more advertisers. Therefore,

what happens is that as we start moving advertisers, we make the clearing price lower. However,

after we reach a critical mass of advertisers in the informed group, suddenly the clearing price will

more likely be determined by the informed group (i.e. there is a high chance that there will be at

least two informed advertisers with high bi’s). From that point onwards, as we make the informed

group larger, we increase the expected clearing price. This is the reason for the non-monotonicity

of the function in the second and third plots of Figure 9. This transition phase is also what explains

the existence of Regions 4 and 5 in Figure 8.

All three effects described above combined generate the six different regions we see in Figure 8.

Advertisers’ payoffs in the independent-values case. In Figure 10 we can see the payoffs of

each type of advertiser for the three information settings and different values of p in [0, 1] when the

b-values of the advertisers are independent. The two plots of Figure 10 describe the more general
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Figure 10: Advertisers’ payoffs in the independent-values case under the different information
settings for different values of p ∈ [0, 1], n1 = n2 = 2, κ = 1/2, and G(x) = x.

behavior of the payoffs when there are more than two advertisers in total (in contrast to Figure 6

which was for one advertiser of each type). There are a few interesting things to note regarding the

payoffs. First, in Figure 10(a), we see that for low values of p it is DIV
PI ≤ DIV

IA ≤ DIV
FI , while for high

values of p it is DIV
IA ≤ DIV

PI ≤ DIV
FI . In other words, when p is low, a constrained advertiser prefers

the asymmetric setting where informed advertisers have more information than them, over the

partial-information setting where all advertisers have similar information. Second, in Figure 10(b),

we see that for low values of p it is EIV
PI ≤ EIV

IA ≤ EIV
FI , while for high values of p it is EIV

PI ≤ EIV
FI ≤ EIV

IA .

In other words, when p is low, an informed advertiser prefers the full-information setting where

constrained advertisers have as much information as them, over the asymmetric setting where the

informed advertiser has more information than the constrained advertisers. The following result

shows that these observations hold more generally.

Proposition 10. For a uniform distribution G, any n1, n2 ≥ 1, and κ ≥ 1/2, when p is sufficiently

low, it holds that DIV
PI ≤ DIV

IA and EIV
IA ≤ EIV

FI .

The intuition behind Proposition 10 is the following. As an advertiser, it is often advantageous

for you if other advertisers gain more information than they currently have. This is because when

an advertiser does not know their actual valuation they bid their expected valuation, but when p

is low it is more likely than not that their actual valuation is lower than their expected valuation.

In other words, when p is sufficiently low, you want the other advertisers to learn their actual

valuations because then it is very likely that they will lower their bids.
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6 More Robustness Checks

In this section, we check the robustness of Proposition 6 (which is the remaining result not proven

analytically for the case where n1, n2 > 1, due to the lack of a closed-form general bidding function

for the constrained advertisers under the common-value IA setting). We first start by establishing

the existence of a pure strategy symmetric equilibrium bidding function for the general case.

Lemma 3 (Advertisers’ bidding behavior). For any strictly increasing and smooth distribution G,

any n1, n2 ≥ 1, and κ ≥ 1/2, under the common-value IA setting, all informed advertisers bid their

true valuations and there exists a pure strategy symmetric equilibrium bidding function β for the

constrained advertisers satisfying β(c) ∈ {(1− κ)c} ∪ [κ, κ+ (1− κ)c] for c ∈ [0, 1].

Lemma 3 is a generalization of Lemmas 1 and 2. Based on Lemma 3, we can numerically

approximate the function β for any n1, n2 ≥ 1 by solving the differential equation ∂u(β̃;β,c)

∂β̃

∣∣∣
β̃=β(c)

=

0, where u is defined in Eq. (4). In Figure 11 we can see one example of the equilibrium bidding

function when there are two informed advertisers and two constrained advertisers. Like in Lemma 1,

for small c-values c, constrained advertisers underbid, while for large values of c they overbid.

Bid β(c)

Expected valuation

0.2 0.4 0.6 0.8 1.0
c

0.2

0.4

0.6

0.8

1.0

Figure 11: Bidding function of the constrained advertisers (solid line) compared to their expected
valuation (dashed line), for n1 = n2 = 2, p = 1/2, κ = 1/2, and G(x) = x.

Despite the lack of a closed-form bidding function, the intuition for the bidding behavior is

the same as the one discussed in Section 4.1. As a result, Proposition 6 continues to hold for a

large number of advertisers. In Figure 12 we can see a demonstration of this. In Figure 12(a)

we consider different values of n, i.e. the total number of advertisers, and assuming that there

is an equal number of informed and constrained advertisers, we estimate the bidding function of
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(b) n = 10, n1 ∈ {0, 1, . . . , n}, n2 = n− n1.

Figure 12: Publisher’s revenue under the different information settings in the common-value case
for different combinations of n1, n2 ≥ 1, p = 1/2, κ = 1/2, and G(x) = x.

the constrained advertisers and calculate the publisher’s revenue. We see that for all cases it is

W CV
IA ≤ W CV

FI = W CV
PI . In Figure 12(b) we fix the total number of advertisers n and consider all

different combinations of n1 and n2. As before, we establish that W CV
IA ≤ W CV

FI = W CV
PI for all cases.

Different choices for the number of advertisers and the other parameters generate similar plots (see

also Appendix B.2 for all the key formulas used to generate the plots).

7 Conclusion

This paper introduces and analyzes the concept of state-dependent predictive value in advertising

auctions: the idea that the usefulness of observable consumer data for predicting conversion depends

on an unobservable consumer state. We develop a game-theoretic model that combines this feature

with asymmetric data access across advertisers and study how different information structures affect

publisher revenue, conversion rates, and advertiser payoffs under both correlated and independent

valuation shifts. Figure 13 provides a concise summary of the main findings.

The central finding is that the interaction between state-dependent data value and information

asymmetry produces a distinctive bidding distortion. When the detailed data component shifts

all advertisers’ valuations in the same direction (the common-value case), constrained advertisers

who lack access to this data face a dilemma: they cannot condition their bids on the realization

of the common component, leading them to underbid when their baseline value is low and overbid

when it is high. This distortion reduces allocative efficiency, causing impressions to be won by
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Figure 13: Summary of main findings.

advertisers who are not the best match for the consumer. Eliminating the asymmetry by restricting

data access for all advertisers removes this distortion, simultaneously improving both publisher

revenue and conversion rates. This result overturns the common intuition that privacy-enhancing

data restrictions necessarily involve a tradeoff between revenue and ad relevance. Importantly,

when all advertisers have symmetric access to the same information, whether full or partial, these

gains disappear: it is the asymmetry itself, rather than the level of information, that drives the

inefficiency.

The picture changes when detailed data affects advertisers’ valuations independently. In this

case, more information does improve allocative efficiency, consistent with standard intuitions. How-

ever, the revenue implications are nuanced and depend on market thickness. In thin markets with

few advertisers, restricting information increases revenue through a market-thinning mechanism:

informed advertisers’ valuations spread out, weakening competition at the top. As the number of

advertisers grows, this effect is overwhelmed by the competitive benefits of better-informed bidding.

Furthermore, information asymmetry can, under certain parameter configurations, generate higher

publisher revenue than either full or partial information, suggesting that selective rather than uni-

form data-access policies may sometimes be optimal. The fact that all six possible orderings of

revenues across the three information settings can arise under different conditions underscores the

complexity of the relationship between information structure and market performance in this case.

Our analysis of advertiser payoffs reveals further counterintuitive patterns. In the independent-
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values case, informed advertisers can prefer the symmetric settings where their informational ad-

vantage is eliminated, because the constrained competitors’ bidding strategy under asymmetry

creates an inefficient competitive environment that harms all participants. Additionally, when the

probability of a high data-dependent valuation component is low, constrained advertisers may pre-

fer the asymmetric setting over one where all advertisers are equally uninformed, because giving

competitors access to data makes them more likely to discover that their valuations are low and bid

accordingly. These findings suggest that advertisers’ preferences over data-access regimes cannot

be straightforwardly inferred from their information status.

These results carry implications for several stakeholders. For publishers and platforms evalu-

ating whether to restrict data access, such as through cookie deprecation, our findings identify a

specific and empirically assessable condition under which restrictions are beneficial: when the data

in question shifts advertiser valuations in a correlated manner across competitors. A platform can

evaluate this by examining whether signals like browsing history or behavioral data tend to make

a given user more or less attractive to most competing advertisers simultaneously, or whether the

effects are idiosyncratic to each advertiser. When the correlated-shift condition holds and data

access is currently asymmetric, restricting access improves both revenue and the quality of ad-

to-consumer matches. For regulators and policymakers, our analysis cautions against evaluating

data-restriction policies without accounting for the correlation structure of advertiser valuations

and the pre-existing degree of information asymmetry. The welfare consequences of the same policy

can be qualitatively different depending on these market fundamentals: a restriction that improves

outcomes in a market with correlated valuations may reduce efficiency in one with independent val-

uations. For advertisers, the analysis highlights that restricting data access to competitors does not

always yield a net competitive advantage, particularly in markets where the additional information

leads to independent valuation shifts.

The model involves several simplifying assumptions that suggest directions for future research.

First, the binary structure of the unobservable consumer state and the Bernoulli distribution for

the data-dependent valuation component, while sufficient to generate the key mechanisms, could

be extended to richer state spaces and continuous distributions to examine whether the effects we

identify are amplified or attenuated. Second, we normalize the per-conversion value to be identical

across advertisers, abstracting from heterogeneity in profit margins. In practice, advertisers with
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higher per-conversion values may invest more heavily in data infrastructure, creating a correlation

between information status and willingness to pay that could interact with the mechanisms we

study. Third, our model treats the information structure as exogenous to the auction, controlled by

the publisher’s data-access policy. Endogenizing advertisers’ decisions to invest in data acquisition,

or modeling a platform’s dynamic data-sharing strategy, would enrich the analysis. Fourth, we

focus on a single auction for a single impression. Extending the framework to a repeated setting

where advertisers learn over time and update their beliefs about the distribution of consumer states

would be a natural next step, particularly for understanding how the transition from one information

regime to another unfolds in practice. Finally, incorporating consumer welfare more explicitly, for

instance by modeling how ad relevance affects user experience and long-run platform engagement,

would provide a more complete picture of the welfare implications of data-access policies.

Despite these limitations, the paper establishes a core theoretical insight: in advertising markets

characterized by state-dependent data value and asymmetric information access, the conventional

wisdom that more data yields better targeting outcomes does not hold in general. An important

determinant, other than how much information is available, is how it is distributed across com-

petitors and how its predictive value interacts with unobservable consumer heterogeneity. As the

online advertising industry continues to navigate the tension between data-driven targeting and

privacy protection, understanding these structural features of the market is essential for designing

information policies that serve the interests of publishers, advertisers, and consumers.
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A Appendix

A.1 Proofs of Lemmas 1 and 2 and Propositions 1 to 4

Proof of Lemma 1

The constrained advertiser’s expected utility when their c-value is c and they bid β is:

u(β, c) := p(1− κ)

∫ max{β−κ
1−κ

,0}

0
(c− c′)d(G(c′)n1) + (1− p)(1− κ)

∫ min{ β
1−κ

,1}

0
(c− c′)d(G(c′)n1).

Suppose that κ < 1−κ. First, let us consider the case when 0 ≤ β < κ, we have u(β, c) = (1−p)(1−

κ)
∫ β

1−κ

0 (c− c′)d(G(c′)n1), which means, ∂u
∂β = n1(1− p)

(
c− β

1−κ

)
G
(

β
1−κ

)n1−1
G′
(

β
1−κ

)
= 0 =⇒

β = (1−κ)c. For, the case when κ < β ≤ 1−κ, we have u(β, c) = p(1−κ)
∫ β−κ

1−κ

0 (c− c′)d(G(c′)n1)+

(1 − p)(1 − κ)
∫ β

1−κ

0 (c − c′)d(G(c′)n1), which means, ∂u
∂β = n1p

(
c− β−κ

1−κ

)
G
(

β−κ
1−κ

)n1−1

G′
(

β−κ
1−κ

)
+

n1(1 − p)
(
c− β

1−κ

)
G
(

β
1−κ

)n1−1

G′
(

β
1−κ

)
. When n1 = 1 and G(x) = x, ∂u

∂β = 0 implies that β =

κp+(1−κ)c. For the case when 1−κ < β ≤ 1, we have u(β, c) = p(1−κ)
∫ β−κ

1−κ

0 (c−c′)d(G(c′)n1)+(1−

p)(1− κ)
∫ 1
0 (c− c′)d(G(c′)n1), which means, ∂u

∂β = n1p
(
c− β−κ

1−κ

)
G
(
β−κ
1−κ

)n1−1
G′
(
β−κ
1−κ

)
= 0 =⇒
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β = κ+(1−κ)c. The global maximum of u occurs either at β = (1−κ)c, κp+(1−κ)c, κ+(1−κ)c,

or at one of the singular points β = κ, 1− κ. Let

u1(c) := u(β = (1− κ)c, c) =


1
2 (1− p)(1− κ)c2, c ≤ κ

1−κ ,

1
2 (1− κ)c2 − p

2

(
κ2

1−κ

)
, κ

1−κ < c ≤ 1,

u2(c) := u(β = κp+ (1− κ)c, c) =



1
2 (1− p)(1− κ)c2 − 1

2 (1− p)p2
(

κ2

1−κ

)
, c ≤ (1−p)κ

1−κ ,

1
2 (1− κ)c2 − 1

2 (1− p)p
(

κ2

1−κ

)
, (1−p)κ

1−κ < c ≤ 1− pκ
1−κ ,

1
2p(1− κ)c2 − 1

2p(1− p)2
(

κ2

1−κ

)
+(1− p)(1− κ)

(
c− 1

2

)
, 1− pκ

1−κ < c ≤ 1,

u3(c) := u(β = κ+ (1− κ)c, c) =


1
2 (1− κ)c2 − 1−p

2

(
κ2

1−κ

)
, c ≤ 1− κ

1−κ ,

1
2p(1− κ)c2 + (1− p)(1− κ)

(
c− 1

2

)
, 1− κ

1−κ < c ≤ 1,

u4(c) := u(β = κ, c) = (1− p)(1− κ)

∫ κ
1−κ

0

(c− c′)d(G(c′)n1) = (1− p)κc− 1

2
(1− p)

(
κ2

1− κ

)
,

u5(c) := u(β = 1− κ, c) = p(1− κ)

∫ 1−2κ
1−κ

0

(c− c′)d(G(c′)n1) + (1− p)(1− κ)

∫ 1

0

(c− c′)d(G(c′)n1)

= p(1− 2κ)c− 1

2
p

(
(1− 2κ)2

1− κ

)
+ (1− p)(1− κ)

(
c− 1

2

)
.

Clearly, u4(c) ≤ u1(c) (in fact u4 is tangent to 1
2(1 − p)(1 − κ)c2 at c = κ

1−κ) and u5(c) ≤ u3(c)

(in fact u5 is tangent to 1
2p(1− κ)c2 + (1− p)(1− κ)

(
c− 1

2

)
at c = 1− κ

1−κ), so we can ignore u4

and u5. Then β = (1− κ)c when u1(c) > u2(c), u3(c), β = κp+ (1− κ)c when u2(c) > u1(c), u3(c),

and β = κ + (1 − κ)c when u3(c) > u1(c), u2(c), and we break ties arbitrarily. We note that

u1, u2, u3 are all continuous in c and that du1
dc ≤ du2

dc ≤ du3
dc , therefore u1 can only be overtaken by

u2, u3 and u2 can only be overtaken by u3, and u3 cannot be overtaken. So, for κ < 1 − κ, there

must exist c and c̄ such that β(c) = (1 − κ)c if c < c, β(c) = κp + (1 − κ)c if c < c < c̄, and

β(c) = κ + (1 − κ)c. Let us now find c12, the point where u2 overtakes u1, suppose that (1−p)κ
1−κ ≤

c12 ≤ κ
1−κ :

1
2(1− p)(1− κ)c212 =

1
2(1− κ)c212 − 1

2(1− p)p
(

κ2

1−κ

)
=⇒ c12 =

√
1−pκ
1−κ ∈

[
(1−p)κ
1−κ , κ

1−κ

]
.

We do not need to further check other intervals due to the uniqueness of the intersection point.

Similarly, we find the location of the point c23 where u3 overtakes u2: 1 − κ
1−κ ≤ c23 ≤ 1 − pκ

1−κ :

1
2p(1−κ)c223+(1−p)(1−κ)

(
c23 − 1

2

)
= 1

2(1−κ)c223− 1
2(1−p)p

(
κ2

1−κ

)
. This is a quadratic equation

in c23 that has roots: 1 ±
√
pκ

1−κ . We take the negative root c23 = 1 −
√
pκ

1−κ ∈
[
1− κ

1−κ , 1−
pκ
1−κ

]
.

Finally, we consider the point c13 where u3 overtakes u1, suppose that 1 − κ
1−κ < c13 < κ

1−κ :
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1
2(1 − p)(1 − κ)c213 = 1

2p(1 − κ)c213 + (1 − p)(1 − κ)
(
c13 − 1

2

)
. This is a quadratic equation in c13

with two roots:
√
1−p√

1−p±√
p
. Since c13 ∈ [0, 1], we take the positive root: c13 =

√
1−p√

1−p+
√
p
. Finally,

we take c := min {c12, c13}, and c̄ := max {c13, c23}, this also ensures that c13 is relevant only if

1− κ
1−κ < c23 < c13 < c12 <

κ
1−κ .

Now, suppose that κ ≥ 1 − κ. Let us consider the case when 0 ≤ β ≤ 1 − κ, we have

u(β, c) = (1 − p)(1 − κ)
∫ β

1−κ

0 (c − c′)d(G(c′)n1), as before, ∂u
∂c = 0 implies β = (1 − κ)c. For

1− κ ≤ β ≤ κ, we find that u(β, c) = (1− p)(1− κ)
∫ 1
0 (c− c′)d(G(c′)n1), which is a constant in β.

For κ < β ≤ 1, we have u(β, c) = p(1−κ)
∫ β−κ

1−κ

0 (c−c′)d(G(c′)n1)+(1−p)(1−κ)
∫ 1
0 (c−c′)d(G(c′)n1),

which means ∂u
∂β = 0 implies β = κ+ (1− κ)c. This time we let

u1(c) := u(β = (1− κ)c, c) =
1

2
(1− p)(1− κ)c2,

u2(c) := u(β = κ+ (1− κ)c, c) =
1

2
p(1− κ)c2 + (1− p)(1− κ)

(
c− 1

2

)
.

And, as before, u3(c) := u(β = κ, c), u4(c) := u(β = 1− κ, c), which we can check that they satisfy

u3(c) ≤ u1(c) and u4(c) ≤ u2(c), so we can ignore them. Since du1
dc = (1−p)(1−κ) ≤ du2

dc = (1−κ)c,

we conclude that u2 can only overtake u1 and cannot be overtaken. Hence, there exists c = c̄ such

that β(c) = (1 − κ)c if c < c and β(c) = κ + (1 − κ)c if c > c̄. Further inspection reveals that

c = c̄ = c13 =
√
1−p√

1−p+
√
p
as previously found. This completes the proof. ■

Proofs of Propositions 1 to 4

Propositions 1 to 4 are special cases of Propositions 5 to 8. We present the proofs of the more

general statements in Appendix B. ■

Proof of Lemma 2

When κ ≥ 1/2, we have κ ≥ 1 − κ, and we only need to consider two cases: 0 ≤ β ≤ 1 − κ

where the constrained advertiser expected utility is u(β, c) = (1− p)(1− κ)
∫ β

1−κ

0 (c− c′)d(G(c′)n1)

and κ ≤ β ≤ 1 where the constrained advertiser expected utility is u(β, c) = p(1 − κ)
∫ β−κ

1−κ

0 (c −

c′)d(G(c′)n1) + (1 − p)(1 − κ)
∫ 1
0 (c − c′)d(G(c′)n1). We do not need to consider the 1 − κ < β < κ

case since u(β, c) = (1− p)(1− κ)
∫ 1
0 (c− c′)d(G(c′)n1) is constant in β over that domain. It follows

that if 0 ≤ β ≤ 1−κ, then ∂u
∂β = n1(1−p)

(
c− β

1−κ

)
G
(

β
1−κ

)n1−1
G′
(

β
1−κ

)
= 0 =⇒ β = (1−κ)c.

Similarly, if κ ≤ β ≤ 1, then ∂u
∂β = n1p

(
c− β−κ

1−κ

)
G
(
β−κ
1−κ

)n1−1
G′
(
β−κ
1−κ

)
= 0 =⇒ β =
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κ+ (1− κ)c. For any fixed c, the global maximum of u occurs either at β = (1− κ)c, κ+ (1− κ)c

or at one of the singular points β = κ, 1− κ. Let

u1(c) := u(β = (1− κ)c, c) = (1− p)(1− κ)

∫ c

0

(c− c′)d(G(c′)n1),

u2(c) := u(β = κ+ (1− κ)c, c) = p(1− κ)

∫ c

0

(c− c′)d(G(c′)n1) + (1− p)(1− κ)

∫ 1

0

(c− c′)d(G(c′)n1),

u3(c) := u(β = κ, c) = (1− p)(1− κ)

∫ κ
1−κ

0

(c− c′)d(G(c′)n1),

u4(c) := u(β = 1− κ, c) = p(1− κ)

∫ 1− κ
1−κ

0

(c− c′)d(G(c′)n1) + (1− p)(1− κ)

∫ 1

0

(c− c′)d(G(c′)n1).

Since u3(c) is the tangent line to u1(c) at c =
κ

1−κ and u4(c) is the tangent line to u2(c) at c = 1− κ
1−κ ,

and both u1, u2 are convex, we have u3 ≤ u1 and u4 ≤ u2, so we can ignore u3, u4. Next, we note that

du1
dc = (1−p)(1−κ)G(c)n1 < p(1−κ)G(c)n1+(1−p)(1−κ) = du2

dc for all c ∈ [0, 1]. We conclude that

u1 can only be overtaken by u2. Note also that u1(0) = 0 > u2(0) = −(1− p)(1−κ)
∫ 1
0 c′d(G(c′)n1)

and u2(1) = p(1 − κ)
∫ c
0 (1 − c′)d(G(c′)n1) + u1(1) > u1(1), so the intersection point c(p) ∈ [0, 1]

exists and is unique. For a given distribution G, we can find c from the relation u1(c) = u2(c).

Equivalently, the relation for c may be written as

∫ 1

0
(c− c′)d(G(c′)n1) =

1− 2p

1− p

∫ c

0
(c− c′)d(G(c′)n1). (2)

Clearly, 1 − κ cancels out and c is independent of κ. Furthermore, u1 − u2 is continuously dif-

ferentiable in p and in c with nonvanishing derivative, and hence c is continuously differentiable

in p by the Implicit Function Theorem. Differentiating u1 − u2 = 0 with respect to p, we get

− 1
1−p

∫ c
0 (c− c′)d(G(c′)n1) = [(1− p)(1−G(c)n1) + pG(c)n1 ] dcdp . The factor in the square bracket is

positive and also
∫ c
0 (c− c′)d(G(c′)n1) > 0, hence dc

dp < 0.

From (2) we can see that p = 0 implies
∫ 1
c (c− c′)d(G(c′)n1) = 0, which holds exactly if c(0) = 1

as the integral is < 0 for all c < 1. Similarly, we can see that the LHS of (2) is bounded in [−1, 1],

while the RHS approaches −∞ as p → 1−, unless c → 0, which must be the case. Hence c(1) = 0.

Lastly, the RHS of (2) vanishes when p = 1/2, therefore, we are left with
∫ 1
0 (c− c′)d(G(c′)n1) = 0

or c =
∫ 1
0 c′d(G(c′)n1) = E[n1cG(c)n1−1], as claimed. ■
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B Online Appendix

B.1 Proofs of Propositions 5 to 10 and Lemma 3

Proof of Proposition 5

The statement of the proposition holds in a more general setting, which we prove in Lemma 4.

Lemma 4. Consider any auction mechanism M such that, whenever bidders are symmetric and

independent, in equilibrium M allocates the impression to the highest-valuation bidder. Suppose

bidder i’s valuation is given by some function of random variables corresponding to b-values and

c-values: vi = v(bi, ci), where we assume v is increasing in ci. Then under the common-value case

b1 = b2 = · · · =: b, for any distribution G, any n1, n2 ≥ 1, and with selling mechanism M , we have

V CV
IA ≤ V CV

FI = V CV
PI .

Proof. Under both the full-information and the partial-information settings, when the b-value b

is common among all the bidders, we have that the bidders are symmetric with their valuations

determined by the independently drawn c-values ci. Therefore, the impression is allocated to the

bidder with the highest ci under M . Under full information, the valuation of any bidder i is

vi = v(bi, ci). Under the partial-information setting, the expected valuation of any bidder i is

E[vi] = E[v(bi, ci)|ci]. It follows that the expected conversion rate is

V CV
FI = Eb

[
(n1 + n2)

∫ 1

0

v(b, c)G(c)n1+n2−1G′(c)dc

]
= (n1 + n2)

∫ 1

0

E [v(b, c)|c]G(c)n1+n2−1G′(c)dc = V CV
PI ,

where in the second equality we applied Fubini’s Theorem. Since the mechanism M under full

information ensures that the bidder with the highest valuation will win, it must be the case that

V CV
FI is the highest possible conversion rate under any information setting. In particular, V CV

IA ≤

V CV
FI = V CV

PI .

Proposition 5 follows by applying Lemma 4 to the case where M is a second-price auction and

v(bi, ci) := κbi + (1− κ)ci. Since bi = 1 with probability p and bi = 0 with probability 1− p, it also

follows that E[v(bi, ci)|ci] = κp+ (1− κ)ci. ■
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Proof of Proposition 6

The fact that W CV
PI = W CV

FI is general and can be seen by directly comparing their expressions. For

n1 = n2 = 1 and κ ≥ 1/2 we may simplify (5) to:

WCV
IA =2p

∫ 1

c

(κ+ (1− κ)c)(1−G(c))G′(c)dc+ 2(1− p)

∫ c

0

(1− κ)c(1−G(c))G′(c)dc

+ p

∫ c

0

(1− κ)cG′(c)dc+ p

∫ c

0

(κ+ (1− κ)c)(1−G(c))G′(c)dc+ (1− p)

∫ 1

c

(1− κ)c(1−G(c))G′(c)dc

=WCV
FI + p

(∫ c

0

(κ+ (1− κ)c)G(c)G′(c)dc−
∫ c

0

(κ+ (1− κ)c)(G(c)−G(c))G′(c)dc− κG(c)

)
+ (1− p)

(∫ 1

c

(1− κ)c(G(c)−G(c))G′(c)dc−
∫ 1

c

(1− κ)c(1−G(c))G′(c)dc

)
=:WCV

FI +W∆,

where W∆ is defined to be the sum of the first and the second bracket. Let us show that W∆ ≤ 0

for all p ∈ [0, 1]. First, we note that (2) can be written equivalently as

pn1

∫ c

0
cG(c)n1−1G′(c)dc+ (1− p)n1

∫ 1

c
cG(c)n1−1G′(c)dc = cpG(c)n1 + c(1− p)(1−G(c)n1). (3)

Then, we have

W∆ =
1

2
κpG(c)2 + (1− κ)p

∫ c

0

cG(c)G′(c)dc

− κpG(c)2 − (1− κ)pG(c)

∫ c

0

cG′(c)dc+
1

2
κpG(c)2 + (1− κ)p

∫ c

0

cG(c)G′(c)dc− κpG(c)

+ (1− κ)(1− p)

∫ 1

c

cG(c)G′(c)dc− (1− κ)(1− p)G(c)

∫ 1

c

cG′(c)dc− (1− κ)(1− p)

∫ 1

c

c(1−G(c))G′(c)dc

=2(1− κ)p

∫ c

0

cG(c)G′(c)dc+ (1− κ)(1− p)

∫ 1

c

cG(c)G′(c)dc

− (1− κ)G(c)p

∫ c

0

cG′(c)dc− (1− κ)G(c)(1− p)

∫ 1

c

cG′(c)dc

− (1− κ)(1− p)

∫ 1

c

c(1−G(c))G′(c)dc− κpG(c)

≤(1− κ)pcG(c)2 + (1− κ)(1− p)

∫ 1

c

cG(c)G′(c)dc

− (1− κ)G(c) (cpG(c) + c(1− p)(1−G(c)))− (1− κ)(1− p)

∫ 1

c

c(1−G(c))G′(c)dc

+ (1− κ)(1− p)c(1−G(c))− (1− κ)p

∫ c

0

cG′(c)dc− (1− κ)(1− p)

∫ 1

c

cG′(c)dc.

The last inequality can be explained as follows. We rewrite the first line using the inequalities:

2(1 − κ)p
∫ c
0 cG(c)G′(c)dc ≤ (1 − κ)pc

∫ c
0 d(G(c)2) = (1 − κ)pcG(c)2. The second line follows from

(3) with n1 = 1. Lastly, we rewrite κpG(c) using (3) and the fact that 1 − κ ≤ κ, c ≤ 1:
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κpG(c) ≥ (1−κ)pcG(c) = (1−κ)p
∫ c
0 cG′(c)dc+(1−κ)(1−p)

∫ 1
c cG′(c)d−(1−κ)c(1−p)(1−G(c)).

Back to the main calculation, after some cancellations, the last inequality becomes:

W∆ ≤(1− κ)(1− p)c(1−G(c))2 − 2(1− κ)(1− p)

∫ 1

c
c(1−G(c))G′(c)dc− (1− κ)p

∫ c

0
cG′(c)dc

≤(1− κ)(1− p)c(1−G(c))2 − 2(1− κ)(1− p)c

∫ 1

c
(1−G(c))G′(c)dc− (1− κ)p

∫ c

0
cG′(c)dc

=− (1− κ)p

∫ c

0
cG′(c)dc ≤ 0.

Therefore, we have that W∆ ≤ 0 as needed. In fact, we can see from W∆ ≤ −(1− κ)p
∫ c
0 cG′(c)dc,

that the equality holds exactly when p = 0, 1, i.e. W CV
IA |p=0,1 = W CV

FI |p=0,1 = W CV
PI |p=0,1. ■

Proof of Proposition 7

Let’s considerN := n1+n2 advertisers which are divided into two disjoint subsets A = {aA1 , . . . , aAn1
}

and B = {aB1 , . . . , aBn2
}, A

∐
B = {1, 2, . . . , n1 + n2}. Set A contains informed advertisers with full

information and hence bid their true valuation. Set B contains constrained advertisers with only

the c-value, and hence bid the expected value κp+(1−κ)c. Let’s consider an instance of an auction

where the c-values in set B are given by c1 > · · · > cn2 , whereas the highest bid in A is given by

the bidder a∗ with valuation κb∗ + (1 − κ)c∗. Independently, we also draw b1, . . . , bn2 b-values for

the constrained advertisers in B.

First, we consider the case where aB1 from B is the winner: κp + (1 − κ)c1 > κb∗ + (1 − κ)c∗.

Suppose that we moved an advertiser aBi ̸= aB1 from set B to set A, keeping all the c-values fixed.

After the move, either aBi becomes the winner or nothing changes. Suppose aBi becomes the winner,

this means bi = 1, κ+(1−κ)ci > κb∗+(1−κ)c∗ and κ+(1−κ)ci > κp+(1−κ)c1 =⇒ c1−ci <
κ(1−p)
1−κ .

With probability p we have b1 = 1, and in this case, the change in the winner’s valuation ∆vw

is given by E[∆vw|b1 = 1] = (κ+ (1− κ)ci)− (κ+ (1− κ)c1) = −(1− κ)(c1 − ci) > −κ(1− p).

With probability 1− p we have b1 = 0, and in this case, the change in the winner’s valuation is

given by E[∆vw|b1 = 0] = (κ+ (1− κ)ci)− (1− κ)c1 = κ− (1− κ)(c1 − ci) > κ− κ(1− p) = κp.

Therefore, the expected change of the winner’s valuation is E[∆vw] = E[∆vw|b1 = 1]P[b1 =

1] + E[∆vw|b1 = 0]P[b1 = 0] > −p · κ(1− p) + (1− p) · κp = 0.

Suppose that we moved an advertiser aB1 from set B to A, keeping all the drawn c-values fixed.
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After the move, either aB1 remains the winner, hence nothing changes, or it is not. If aB1 is no longer

a winner, then either a∗ is the winner, in that case, we have an increase in the winner’s valuation

since κb∗ + (1− κ)c∗ > κb1 + (1− κ)c1. Otherwise, aB2 is now the winner, so we must have b1 = 0

and κp+ (1− κ)c2 > (1− κ)c1 =⇒ c1 − c2 <
κp
1−κ .

With probability p we have b2 = 1, and in this case, the change in the winner’s valuation is

given by E[∆vw|b2 = 1] = (κ+ (1− κ)c2)− (1− κ)c1 = κ− (1− κ)(c1 − c2) > κ− κp = κ(1− p).

With probability 1− p we have b2 = 0, and in this case, the change in the winner’s valuation is

given by E[∆vw|b2 = 0] = (1− κ)c2 − (1− κ)c1 = −(1− κ)(c1 − c2) > −κp.

Therefore, the expected change of the winner’s valuation is E[∆vw] = E[∆vw|b1 = 1]P[b1 =

1] + E[∆vw|b1 = 0]P[b1 = 0] > p · κ(1− p)− (1− p) · κp = 0.

Now, we consider the case where a∗ is the winner: κb∗ +(1−κ)c∗ > κp+(1−κ)c1. If a winner

changed by moving an aBi advertiser from the set B to the set A, keeping all the drawn b-values

and c-values fixed, then the moved advertiser must have κbi+(1−κ)ci > κb∗+(1−κ)c∗. Therefore,

the winner’s valuation can only increase in this case.

It follows that the conversion rate increases or remains the same for every advertiser we move

from set B to set A. We conclude that V CV
FI ≥ V CV

IA ≥ V CV
PI . ■

Proof of Proposition 8

Let’s denote by wIV
FI , w

IV
IA, w

IV
PI the revenue under each information setting for an instant of auction,

so that we have W IV
FI := E[wIV

FI ],W
IV
IA := E[wIV

IA],W
IV
PI := E[wIV

PI ]. Consider an instance of auction

where the c-value of the informed advertiser is c1 and the c-value of the constrained advertiser is

c2. Both c1, c2 are drawn independently from the distribution G. First, we consider E [wIV
FI |c1, c2],

there are two cases: the case max{c1, c2} > min{c1, c2} + κ
1−κ , for which we find: E [wIV

FI |c1, c2] =

(κ+ (1− κ)min{c1, c2}) · p+ (1− κ)min{c1, c2} · (1− p) = κp+ (1− κ)min{c1, c2} and the case:

min{c1, c2}+ κ
1−κ > max{c1, c2}, where we have

E
[
wIV

FI |c1, c2
]
=(κ+ (1− κ)min{c1, c2}) · p2 + (1− κ)min{c1, c2} · (1− p) + (1− κ)max{c1, c2} · (1− p)p

=κp2 + (1− κ)min{c1, c2} · (1− p+ p2) + (1− κ)max{c1, c2} · (1− p)p.

Next, we consider E [wIV
IA|c1, c2], there are three cases: the case c1 > c2 +

pκ
1−κ , for which we find

E [wIV
IA|c1, c2] = κp+ (1− κ)c2, the case: c2 +

pκ
1−κ > c1 > c2 − (1−p)κ

1−κ , where we have E [wIV
IA|c1, c2] =
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(κp+(1−κ)c2) ·p+(1−κ)c1 · (1−p), and the case: c2− (1−p)κ
1−κ > c1, where we have E [wIV

IA|c1, c2] =

(κ+ (1− κ)c1) · p+ (1− κ)c1 · (1− p) = κp+ (1− κ)c1.

Lastly, in all cases we have that E [wIV
PI |c1, c2] = κp+ (1− κ)min{c1, c2}.

Now we can check that for all possible pairs of c1, c2 we have E [wIV
FI |c1, c2] ≤ E [wIV

IA|c1, c2] ≤

E [wPI
IA|c1, c2]. Taking an expectation over all possible c1, c2 we have that W IV

FI ≤ W IV
IA ≤ W IV

PI as

claimed. ■

Proof of Proposition 9

From Proposition 8 we already know that for n1 = n2 = 1 we have W IV
FI ≤ W IV

PI for all p ∈ [0, 1].

Now, fix p ∈ [0, 1] and consider the n1, n2 > 0 case. Note that using integration by-parts we can

rewrite W IV
FI as:

W IV
FI =(n1 + n2)(1− κ)(1− p)n1+n2−1p− (n1 + n2)κ(1− p)n1+n2−1p

+ (1− κ)

∫ 1

0

(
c− 1− (1− p)G(c)

(1− p)G′(c)

)
d ((1− p)G(c))

n1+n2

+

∫ 1

0

(
κ+ (1− κ)c− (1− κ)(1−G(c))

G′(c)

)
d (pG(c) + (1− p))

n1+n2

=− (n1 + n2)(2κ− 1)(1− p)n1+n2−1p+ (1− κ)(1− p)n1+n2Ec∼G(c)n1+n2

[
c− 1− (1− p)G(c)

(1− p)G′(c)

]
+ Ec∼(pG(c)+(1−p))n1+n2

[
κ+ (1− κ)c− (1− κ)(1−G(c))

G′(c)

]
.

Where Ec∼F (c)[.] denotes the expected value with c distributed by F (c). Similarly, we can rewrite

W IV
PI as

W IV
PI =

∫ 1

0

(
κp+ (1− κ)c− (1− κ)(1−G(c))

G′(c)

)
dG(c)n1+n2

= Ec∼G(c)n1+n2

[
κp+ (1− κ)c− (1− κ)(1−G(c))

G′(c)

]
.

When n1 and n2 are large, the densities of distributions G(c)n1+n2 and (pG(c) + (1− p))n1+n2

become concentrated around c = 1. Therefore, W IV
PI tends towards κp + (1 − κ). On the other

hand, the first and second terms in W IV
FI tend to zero due to (1 − p)n1+n2 but the last term tends

to κ+ (1− κ) = 1. Hence, we have W IV
FI > W IV

PI for all sufficiently large n1 and n2. ■
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Proof of Proposition 10

Using the formulas in the Online Appendix B.2 for G(x) = x and κ ≥ 1/2, we derive that

∂

∂p
(DIV

IA −DIV
PI)
∣∣∣
p=0

=
n1

n1 + n2 + 1

(
2κ

n1 + n2 − 1
− 1

n1 + n2

)

and

∂

∂p
(EIV

FI − EIV
IA)
∣∣∣
p=0

=
n2

n1 + n2 + 1

(
2κ

n1 + n2 − 1
− 1

n1 + n2

)
.

Since 2κ
n1+n2−1 −

1
n1+n2

≥ 1
n1+n2−1 −

1
n1+n2

> 0 when κ ≥ 1/2, both derivatives are strictly positive

at p = 0. Therefore, there is a neighborhood of p = 0, where the result holds. ■

Proof of Lemma 3

The informed advertisers will always bid their true valuation as it is a weakly dominant strategy to

do so. Therefore, for the remainder, we will focus on the nontrivial part, which is the constrained

advertisers’ bidding strategy.

The expected utility for a constrained advertiser with c-value c from bidding β̃ when all other

n2 − 1 constrained advertisers follow the strategy β is given by:

u(β̃;β, c) :=p

(1− κ)

∫ max
{

β̃−κ
1−κ ,0

}
0

(c− c′)G(supβ−1[0, κ+ (1− κ)c′))n2−1
(
n1G(c′)n1−1G′(c′)

)
dc′

+

∫ sup β−1[0,β̃)

0

(κ+ (1− κ)c− β(c′))G

(
max

{
β(c′)− κ

1− κ
, 0

})n1 (
(n2 − 1)G(c′)n2−2G′(c′)

)
dc′

]

+ (1− p)

(1− κ)

∫ min
{

β̃
1−κ ,1

}
0

(c− c′)G(supβ−1[0, (1− κ)c′))n2−1
(
n1G(c′)n1−1G′(c′)

)
dc′

+

∫ sup β−1[0,β̃)

0

((1− κ)c− β(c′))G

(
min

{
β(c′)

1− κ
, 1

})n1 (
(n2 − 1)G(c′)n2−2G′(c′)

)
dc′

]
. (4)

Let us restrict our attention to the bidding functions β that belong to the following class of functions:

F :=
{
β ∈ L1[0, 1] | β is represented by a non-decreasing function [0, 1] → [0, 1]

}
.

Here, L1[0, 1] denotes the usual Banach space of the equivalence classes of Lebesgue-integrable

functions on [0, 1] equipped with the usual norm ∥f∥L1 :=
∫ 1
0 |f(x)|dx. It is not hard to verify that

F is a convex and compact subset of L1[0, 1].

We note that the sign of each of the integrals in (4) is determined by the sign of (c − c′),
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κ + (1 − κ)c − β(c′), and (1 − κ)c − β(c′), respectively, all of which are increasing functions in c

and decreasing in c′. Essentially, given β and c, finding the maximum β̃ = β̃0 of u(β̃;β, c) is to

‘integrate until the integrands are negative’. The reality is slightly more subtle, as the upper limit

of each integral are different non-linear functions of β̃.

Lemma 5. Given β ∈ F and c ∈ [0, 1] then u(β̃;β, c) as a function of β̃ ∈ [0, 1] achieves its global

maximum inside {(1− κ)c} ∪ [κ, κ+ (1− κ)c].

Proof. First, let us observe where a maximum of u(β̃;β, c) cannot be located. If β̃(c) ∈ (κ +

(1 − κ)c, 1] then the third term of (4) is constant in β̃. The first term is strictly decreasing for

β̃ > κ + (1 − κ)c. The second and fourth terms are non-constant if β(c) > κ + (1 − κ)c for

some c, but then these two terms decrease with β̃ because β(c′) > κ + (1 − κ)c > (1 − κ)c for

c′ = maxβ−1[0, β̃) ≥ maxβ−1[0, κ+(1−κ)c). Similarly, if β̃ ∈ [0, (1−κ)c) then only the third and

fourth terms of (4) are non-constant in β̃. The third term is strictly increasing for β̃ < (1−κ)c and

for any c′ = maxβ−1[0, β̃) ≤ max β̃−1[0, (1− κ)c), which means β(c′) < (1− κ)c, hence the fourth

term is increasing.

If β̃ ∈ [(1 − κ)c, κ], then every term of (4) is constant except for the fourth term which could

be non-constant if β(c) > (1 − κ)c for some c, and in that case, the fourth term is decreasing. In

other words, the maximum value of u(β̃;β, c) over [(1 − κ)c, κ] is reached at β̃ = (1 − κ)c. Since

the fourth term of (4) is necessarily strictly decreasing, it is possible that u(β̃;β, c) also attains its

maximum value at other points in ((1− κ)c, κ], this fact will serve no practical implication for us.

Next, we focus on the case where β̃ ∈ [κ, κ + (1 − κ)c], and we shall show that u(β̃;β, c)

also reaches its maximum over this interval. We note that u(β̃;β, c) is left-continuous because

supβ−1[0, β̃) is left-continuous, and the point where it is not continuous is exactly where {c | β(c) =

β̃0} has non-empty interior. In particular, let b := inf{c | β(c) = β̃0} and b̄ := sup{c | β(c) = β̃0}

then it follows that (b, b̄) ⊂ S(β̃0). In that case, we have supβ−1[0, β̃) ≤ b for β̃ ≤ β̃0 and

supβ−1[0, β̃) ≥ b̄ for β̃ > β̃0. Given that β̃ ∈ [κ, κ + (1 − κ)c], the third term of (4) is constant

in a neighborhood of β̃0. Let δ > 0 be arbitrarily small, then the first term of (4) will take

approximately the same value at β̃0 and at β̃0 + δ. If u(β̃0;β, c) < u(β̃0 + δ;β, c) it must be

the case that the sum of the second and fourth integrals is positive over (b, b̄). In particular,(
κ+ (1− κ)c− β̃0

)
G
(
max

{
β̃0−κ
1−κ , 0

})n1

+
(
(1− κ)c− β̃0

)
G
(
min

{
β̃0

1−κ , 1
})n1

> 0.
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But we also know that for all c′ ∈ supβ−1[0, β̃0 + δ) we have β(c′) < β̃0 + δ, then from the

inequality above we have that the sum of the integrands of the second and fourth integrals in (4)

is positive immediately to the right of β̃0 as δ > 0 is arbitrary small. Since β̃0 ≤ κ+ (1− κ)c, the

integrand of the first integral in (4) is also positive. It follows that u(β̃;β, c) continue to increase

over some right neighborhood of β̃0 + δ, hence supβ̃ u(β̃;β, c) > limβ̃→β̃+
0
u(β̃;β, c).

Lemma 5 allows us to define the best-response set-valued function as follows: BR(β, c) :=

argmaxβ̃∈[0,1] u(β̃;β, c). Let us also restrict our attention to β such that β(c) ∈ {(1−κ)c}∪ [κ, κ+

(1− κ)c].

Lemma 6. The best-response function is closed-valued and non-decreasing in the sense that if

c1 < c2, then maxBR(β, c1) ≤ minBR(β, c2).

Proof. The fact that BR(β, c) is closed follows since according to Lemma 5, u(β̃;β, c) is left-

continuous and if u(β̃;β, c) is discontinuous at β̃0 then lim supβ̃→β̃+
0
u(β̃;β, c) is always less than

the global maximum value of u. In other words, if β̃i ∈ BR(β, c), i = 1, 2, . . . and β̃i → β̃0 ∈ [0, 1]

then u(β̃0;β, c) = u(β̃i;β, c) for all i, which means β̃0 ∈ BR(β, c). Therefore, it makes sense to talk

about the maximum and minimum of BR(β, c).

Given any δ > 0, we note that it is possible to write u(β̃;β, c+δ) = u(β̃;β, c)+∆(β̃;β, δ), where

∆(β̃;β, c) is exactly given by (4) but with (c−c′), (κ+(1−κ)c−β(c′)), and ((1−κ)c−β(c′)) factors

replaced by δ, (1− κ)δ, and (1− κ)δ, respectively. Thus, ∆(β̃;β, δ) is a non-decreasing function in

β̃ and strictly increases over [0, 1−κ]∪ [κ, 1]. Then the fact that BR(β, c) is non-decreasing follows

from the following elementary argument. Let β̃0 = maxBR(β, c) then u(β̃0;β, c) ≥ u(β̃;β, c) for all

β̃ ∈ [0, β̃0). Therefore, u(β̃0;β, c + δ) > u(β̃;β, c + δ) for all β̃ ∈ [0, β̃0) by the strict monotonicity

of ∆(β̃;β, δ), which means any other global maxima of u(β̃;β, c+ δ) must be in [β̃0, κ+ (1− κ)c],

proving the lemma.

Using Lemma 6 it is now possible to define the best-response bidding function to the bidding

β of all other n2 − 1 constrained advertisers: BR : F → F , β̃ := BR(β) : c 7→ minBR(β, c), where

we have slightly abused the notation, using both β̃ as a particular bidding value and the bidding

function, and BR as both the best response bidding set-valued function and the best response

bidding function-valued map. However, we hope that any ambiguity can be resolved by context.
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Lemma 7. The best-response function BR is continuous with respect to the L1 norm.

We will omit the technical proof, but the intuition is clear. Any two β1, β2 ∈ F non-decreasing

functions which are ‘close’ together under L1 norm must take similar values β1(c) ≈ β2(c) at any

c they are both continuous. Moreover, the location of any discontinuous points of β1 and β2 must

be similar. The same is true for their inverses supβ−1
1 [0, β̃) ≈ β−1

2 [0, β̃). Hence we can expect

u(β̃;β1, c) ≈ u(β̃;β2, c) for all β̃ and c and therefore the maximum point of u(.;β1, c) should be

close to the maximum point of u(.;β2, c).

From Lemma 7, the response function BR is continuous with respect to L1 norm and maps

a convex compact subset F ⊂ L1[0, 1] into itself. L1[0, 1] is a normed-vector space, hence it

is automatically a Hausdorff locally convex topological vector space. From the Kakutani-Fan-

Glicksberg Theorem, we know that BR has a fixed point. ■

B.2 Key Formulas

Unless stated otherwise, all formulas in this section are valid for any given κ ∈ [0, 1], p ∈ [0, 1],

n1, n2 ≥ 0 and an arbitrary c-value distribution G on [0, 1].

Common-value case

To deal with any discontinuities of the bidding function β we let β−1[a, b) denote the inverse image

of β i.e. a set I such that x ∈ I =⇒ β(x) ∈ [a, b), and supβ−1[a, b) denotes the supremum of this

set.

Advertisers’ conversion rate:

The advertisers’ conversion rates under each information setting are given by:

V CV
FI =p(n1 + n2)

∫ 1

0
(κ+ (1− κ)c)G(c)n1+n2−1G′(c)dc

+ (1− p)(n1 + n2)

∫ 1

0
(1− κ)cG(c)n1+n2−1G′(c)dc,

V CV
IA =pn2

∫ 1

0
(κ+ (1− κ)c)G

(
max

{
β(c)− κ

1− κ
, 0

})n1

G(c)n2−1G′(c)dc

+ pn1

∫ 1

0
(κ+ (1− κ)c)G(c)n1−1G

(
supβ−1[0, κ+ (1− κ)c)

)n2 G′(c)dc
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+ (1− p)n2

∫ 1

0
(1− κ)cG

(
min

{
β(c)

1− κ
, 1

})n1

G(c)n2−1G′(c)dc

+ (1− p)n1

∫ 1

0
(1− κ)cG(c)n1−1G

(
supβ−1[0, (1− κ)c)

)n2 G′(c)dc,

V CV
PI = (n1 + n2)

∫ 1

0
(κp+ (1− κ)c)G(c)n1+n2−1G′(c)dc.

We note that V CV
FI = V CV

PI .

Publisher’s expected revenue:

The publisher’s expected revenues for each information setting are given by:

W CV
FI =p(n1 + n2)(n1 + n2 − 1)

∫ 1

0
(κ+ (1− κ)c)(1−G(c))G(c)n1+n2−2G′(c)dc

+ (1− p)(n1 + n2)(n1 + n2 − 1)

∫ 1

0
(1− κ)c(1−G(c))G(c)n1+n2−2G′(c)dc,

WCV
IA =pn1n2

∫ 1

0

(κ+ (1− κ)c)
(
1−G

(
supβ−1[0, κ+ (1− κ)c)

))
G(c)n1−1G

(
supβ−1[0, κ+ (1− κ)c)

)n2−1
G′(c)dc

+ pn1n2

∫ 1

0

β(c)

(
1−G

(
max

{
β(c)− κ

1− κ
, 0

}))
G

(
max

{
β(c)− κ

1− κ
, 0

})n1−1

G(c)n2−1G′(c)dc

+ pn1(n1 − 1)

∫ 1

0

(κ+ (1− κ)c) (1−G(c))G(c)n1−2G
(
supβ−1[0, κ+ (1− κ)c)

)n2
G′(c)dc

+ pn2(n2 − 1)

∫ 1

0

β(c) (1−G(c))G

(
max

{
β(c)− κ

1− κ
, 0

})n1

G(c)n2−2G′(c)dc

+ (1− p)n1n2

∫ 1

0

(1− κ)c
(
1−G

(
supβ−1[0, (1− κ)c)

))
G(c)n1−1G

(
supβ−1[0, (1− κ)c)

)n2−1
G′(c)dc

+ (1− p)n1n2

∫ 1

0

β(c)

(
1−G

(
min

{
β(c)

1− κ
, 1

}))
G

(
min

{
β(c)

1− κ
, 1

})n1−1

G(c)n2−1G′(c)dc

+ (1− p)n1(n1 − 1)

∫ 1

0

(1− κ)c (1−G(c))G(c)n1−2G
(
supβ−1[0, (1− κ)c)

)n2
G′(c)dc

+ (1− p)n2(n2 − 1)

∫ 1

0

β(c) (1−G(c))G

(
min

{
β(c)

1− κ
, 1

})n1

G (c)n2−2 G′(c)dc, (5)

W CV
PI = (n1 + n2)(n1 + n2 − 1)

∫ 1

0
(κp+ (1− κ)c)(1−G(c))G(c)n1+n2−2G′(c)dc.

We note that W CV
FI = W CV

PI .

Constrained advertisers’ payoff:

DCV
FI =

V CV
FI −W CV

FI

n1 + n2
=

∫ 1

0
(pκ+ (1− κ)c)G(c)n1+n2−1G′(c)dc

− (n1 + n2 − 1)

∫ 1

0
(pκ+ (1− κ)c)(1−G(c))G(c)n1+n2−2G′(c)dc, (6)
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DCV
IA =p

∫ 1

0

(κ+ (1− κ)c)G

(
max

{
β(c)− κ

1− κ
, 0

})n1

G(c)n2−1G′(c)dc

+ (1− p)

∫ 1

0

(1− κ)cG

(
min

{
β(c)

1− κ
, 1

})n1

G(c)n2−1G′(c)dc

− pn1

∫ 1

0

(κ+ (1− κ)c)
(
1−G

(
supβ−1[0, κ+ (1− κ)c)

))
G(c)n1−1G

(
supβ−1[0, κ+ (1− κ)c)

)n2−1
G′(c)dc

− p(n2 − 1)

∫ 1

0

β(c) (1−G(c))G

(
max

{
β(c)− κ

1− κ
, 0

})n1

G(c)n2−2G′(c)dc

− (1− p)n1

∫ 1

0

(1− κ)c
(
1−G

(
supβ−1[0, (1− κ)c)

))
G(c)n1−1G

(
supβ−1[0, (1− κ)c)

)n2−1
G′(c)dc

− (1− p)(n2 − 1)

∫ 1

0

β(c) (1−G(c))G

(
min

{
β(c)

1− κ
, 1

})n1

G (c)n2−2 G′(c)dc, (7)

DCV
PI =

V CV
PI −W CV

PI

n1 + n2
= DCV

FI . (8)

Informed advertisers’ payoff:

ECV
FI =

V CV
FI −W CV

FI

n1 + n2
= DCV

FI =
V CV

PI −W CV
PI

n1 + n2
= ECV

PI , (9)

ECV
IA =p

∫ 1

0

(κ+ (1− κ)c)G(c)n1−1G
(
supβ−1[0, κ+ (1− κ)c)

)n2
G′(c)dc

+ (1− p)

∫ 1

0

(1− κ)cG(c)n1−1G
(
supβ−1[0, (1− κ)c)

)n2
G′(c)dc

− pn2

∫ 1

0

β(c)

(
1−G

(
max

{
β(c)− κ

1− κ
, 0

}))
G

(
max

{
β(c)− κ

1− κ
, 0

})n1−1

G(c)n2−1G′(c)dc

− pn(n1 − 1)

∫ 1

0

(κ+ (1− κ)c) (1−G(c))G(c)n1−2G
(
supβ−1[0, κ+ (1− κ)c)

)n2
G′(c)dc

− (1− p)n2

∫ 1

0

β(c)

(
1−G

(
min

{
β(c)

1− κ
, 1

}))
G

(
min

{
β(c)

1− κ
, 1

})n1−1

G(c)n2−1G′(c)dc

− (1− p)(n1 − 1)

∫ 1

0

(1− κ)c (1−G(c))G(c)n1−2G
(
supβ−1[0, (1− κ)c)

)n2
G′(c)dc. (10)

Independent-values case

In the independent-values case, all advertisers bid truthfully. An advertiser with a c-value c but

without b-data would bid the expected value κp + (1 − κ)c. An advertiser with full information

would bid v = κb + (1 − κ)c where v is distributed by G̃(v) := P[v′ ≤ v] = pG
(
max

{
v−κ
1−κ , 0

})
+

(1− p)G
(
min

{
v

1−κ , 1
})

.

Advertisers’ conversion rate:

The advertisers’ conversion rates under each information setting are given by:
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V IV
FI = (n1 + n2)

∫ 1

0
vG̃(v)n1+n2−1G̃′(v)dv,

V IV
IA = n1

∫ 1

0
vG̃(v)n1−1G

(
min

{
max

{
v − κp

1− κ
, 0

}
, 1

})n2

G̃′(v)dv

+ (1− p)n2

∫ 1

0
(1− κ)cG̃(κp+ (1− κ)c)n1G(c)n2−1G′(c)dc

+ pn2

∫ 1

0
(κ+ (1− κ)c)G̃(κp+ (1− κ)c)n1G(c)n2−1G′(c)dc,

V IV
PI = (n1 + n2)

∫ 1

0
(κp+ (1− κ)c)G(c)n1+n2−1G′(c)dc.

Publisher’s expected revenue:

The publisher’s expected revenues for each information setting are given by:

W IV
FI = (n1 + n2)(n1 + n2 − 1)

∫ 1

0
v
(
1− G̃(v)

)
G̃(v)n1+n2−2G̃′(v)dv,

W IV
IA =n1(n1 − 1)

∫ 1

0

v
(
1− G̃(v)

)
G̃(v)n1−2G

(
min

{
max

{
v − κp

1− κ
, 0

}
, 1

})n2

G̃′(v)dv

+ n1n2

∫ 1

0

v

(
1−G

(
min

{
max

{
v − κp

1− κ
, 0

}
, 1

}))
G̃(v)n1−1G

(
min

{
max

{
v − κp

1− κ
, 0

}
, 1

})n2−1

G̃′(v)dv

+ n1n2

∫ 1

0

(κp+ (1− κ)c)
(
1− G̃(κp+ (1− κ)c)

)
G̃(κp+ (1− κ)c)n1−1G(c)n2−1G′(c)dc

+ n2(n2 − 1)

∫ 1

0

(κp+ (1− κ)c) (1−G(c)) G̃ (κp+ (1− κ)c)n1 G(c)n2−2G′(c)dc,

W IV
PI = (n1 + n2)(n1 + n2 − 1)

∫ 1

0
(κp+ (1− κ)c)(1−G(c))G(c)n1+n2−2G′(c)dc.

Constrained advertisers’ payoff:

DIV
FI =

V IV
FI −W IV

FI

n1 + n2
=

∫ 1

0
vG̃(v)n1+n2−1G̃′(v)dv

− (n1 + n2 − 1)

∫ 1

0
v
(
1− G̃(v)

)
G̃(v)n1+n2−2G̃′(v)dv, (11)

DIV
IA =(1− p)

∫ 1

0

(1− κ)cG̃(κp+ (1− κ)c)n1G(c)n2−1G′(c)dc

+ p

∫ 1

0

(κ+ (1− κ)c)G̃(κp+ (1− κ)c)n1G(c)n2−1G′(c)dc
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− n1

∫ 1

0

v

(
1−G

(
min

{
max

{
v − κp

1− κ
, 0

}
, 1

}))
G̃(v)n1−1G

(
min

{
max

{
v − κp

1− κ
, 0

}
, 1

})n2−1

G̃′(v)dv

− (n2 − 1)

∫ 1

0

(κp+ (1− κ)c) (1−G(c)) G̃ (κp+ (1− κ)c)n1 G(c)n2−2G′(c)dc, (12)

DIV
PI =

V IV
PI −W IV

PI

n1 + n2
=

∫ 1

0
(κp+ (1− κ)c)G(c)n1+n2−1G′(c)dc

− (n1 + n2 − 1)

∫ 1

0
(κp+ (1− κ)c)(1−G(c))G(c)n1+n2−2G′(c)dc.

Informed advertisers’ payoff:

EIV
FI =

V IV
FI −W IV

FI

n1 + n2
= DIV

FI , EIV
PI =

V IV
PI −W IV

PI

n1 + n2
= DIV

PI , (13)

EIV
IA =

∫ 1

0
vG̃(v)n1−1G

(
min

{
max

{
v − κp

1− κ
, 0

}
, 1

})n2

G̃′(v)dv

− (n1 − 1)

∫ 1

0
v
(
1− G̃(v)

)
G̃(v)n1−2G

(
min

{
max

{
v − κp

1− κ
, 0

}
, 1

})n2

G̃′(v)dv

− n2

∫ 1

0
(κp+ (1− κ)c)

(
1− G̃(κp+ (1− κ)c)

)
G̃(κp+ (1− κ)c)n1−1G(c)n2−1G′(c)dc.

(14)

B.3 First-Price Auction

A commonly used auction format in advertising auctions nowadays is the first-price auction format

(see e.g., Despotakis et al., 2021). In this section, we modify our model to a first-price auction

instead of a second-price auction for selling the impression, to test the robustness of our main

findings.

In a first-price auction, since advertisers pay their own bid if they win, constrained advertisers

who do not have complete information about their valuations, are even more likely to bid conser-

vatively (underbid) compared to a second-price auction. As a result, information asymmetry can

lead to both a lower conversion rate and reduced publisher revenue, compared to the symmetric

information settings, for similar reasons this happens in second-price auctions. In other words, our

result that restricting data access can simultaneously increase both the conversion rate and pub-

lisher revenue remains valid in common-value first-price auctions. Propositions 11 and 12 below

confirm this.
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Proposition 11. For any distribution G, any n1, n2 ≥ 1, κ ∈ [0, 1], under the common-value case,

and when the auction format is first-price, we have that V CV
IA ≤ V CV

FI = V CV
PI .

Proof. This result follows from Lemma 4, where the mechanism M is a first-price auction.

Proposition 12. For any distribution G, n1 > 1, n2 ≥ 1, κ ≥ 1/2, and sufficiently low p, under the

common-value case, and when the auction format is first-price, we have that W CV
IA ≤ W CV

FI = W CV
PI .

Proof. Suppose that, when there is information asymmetry, at equilibrium the constrained and in-

formed advertisers use the bidding functions βD : [0, 1] → [0, 1] and βE : [0, 1]2 → [0, 1], respectively.

The expected utility of a constrained advertiser with c-value c who bids β̃ is

uD(β̃;βD, βE , c) =p
(
κ+ (1− κ)c− β̃

)
G
(
supβ−1

E ([0, β̃), b = 1)
)n1

G(supβ−1
D ([0, β̃)))n2−1

+ (1− p)
(
(1− κ)c− β̃

)
G
(
supβ−1

E ([0, β̃), b = 0)
)n1

G(supβ−1
D ([0, β̃)))n2−1.

The expected utility of an informed advertiser with c-value c and b-value b who bids β̃ is

uE(β̃;βD, βE , c, b) =
(
κb+ (1− κ)c− β̃

)
G(supβ−1

E ([0, β̃), b))n1−1G(supβ−1
D ([0, β̃)))n2 .

The expected publisher revenue is

W CV
IA =pn2

∫ 1

0
βD(c)G(supβ−1

E ([0, βD(c)), 1))
n1G(c)n2−1G′(c)dc

+ pn1

∫ 1

0
βE(c, 1)G(c)n1−1G(supβ−1

D ([0, βE(c, 1))))
n2G′(c)dc

+ (1− p)n2

∫ 1

0
βD(c)G(supβ−1

E ([0, βD(c)), 0))
n1G(c)n2−1G′(c)dc

+ (1− p)n1

∫ 1

0
βE(c, 0)G(c)n1−1G(supβ−1

D ([0, βE(c, 0))))
n2G′(c)dc.

For the other two information settings, W CV
FI and W CV

PI , the revenue is identical to the second-price

auction case by the revenue equivalence principle.

The conversion rate is

V CV
IA =pn2

∫ 1

0
(κ+ (1− κ)c)G

(
supβ−1

E ([0, βD(c)), 1)
)n1

G(c)n2−1G′(c)dc

+ pn1

∫ 1

0
(κ+ (1− κ)c)G(c)n1−1G

(
supβ−1

D [0, βE(c, 1))
)n2

G′(c)dc
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+ (1− p)n2

∫ 1

0
(1− κ)cG

(
supβ−1

E ([0, βD(c)), 0)
)n1

G(c)n2−1G′(c)dc

+ (1− p)n1

∫ 1

0
(1− κ)cG(c)n1−1G

(
supβ−1

D [0, βE(c, 0))
)n2

G′(c)dc.

If p is sufficiently low,12 the constrained advertisers will choose to not compete with the informed

advertisers if b = 1 and will always bid as if b = 0 regardless of the actual value of b (which they do

not know anyway). In this case, when b = 0 the game reduces to a symmetric first-price auction

among all n1 + n2 advertisers, and when b = 1 the game reduces to a symmetric first-price auction

among n1 informed advertisers. Consequently, we have a symmetric equilibrium where the bidding

functions have simple analytical closed forms as follows:

βD(c) = (1− κ)

(
c−

∫ c

0

(
G(t)

G(c)

)n1+n2−1

dt

)
,

βE(c, b) = κb+ (1− κ)

(
c−

∫ c

0

(
G(t)

G(c)

)n1+(1−b)n2−1

dt

)
. (15)

Under the perfect-information and the partial-information settings, the bidders are symmetric

and independent, thus it follows from the revenue equivalence principle that W CV
IA and W CV

FI are both

equal to their second-price auction counterparts, hence they are equal to each other. We also note

from (15) that βD(c) ≤ βE(c, b) ≤ κb+ (1− κ)

(
c−

∫ c
0

(
G(t)
G(c)

)n1+n2−1
dt

)
, for all c, b, where notice

that the RHS is the bidding function under the perfect-information setting. The first inequality

holds since βE(c, 1) − βD(c) ≥ κ − (1 − κ) ≥ 0 because κ ≥ 1/2, and the second inequality holds

since
(

G(t)
G(c)

)n1+(1−b)n2−1
≥
(

G(t)
G(c)

)n1+n2−1
for all t, c ∈ [0, 1] such that t ≤ c. In other words, the

bids of all advertisers are at least as high in the perfect-information setting as under information

asymmetry, hence the revenue W CV
FI is at least as high as W CV

IA .

C Common c-Value

In this section, we consider the case where the random variables ci are not independent, but they

are the same for all advertisers, i.e. c1 = c2 = . . . = cn =: c, where c is drawn from distribution G.

As in the main model, we consider the following sub-cases. Let E[c] :=
∫ 1
0 cdG(c) in the following.

12E.g. if κp+ (1− κ) < κ =⇒ p < 2− 1/κ, which is a sufficient but not necessary bound.
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� Common b-values (CV): All the advertisers have the same valuation κb+ (1− κ)c.

– Full Information (FI): All advertisers bid κb + (1 − κ)c. For n1, n2 ≥ 1: V CV
FI =

(κ+ (1− κ)E[c]) · p+ (1− κ)E[c] · (1− p) = κp+ (1− κ)E[c].

– Information Asymmetry (IA): Informed advertisers bid κb + (1 − κ)c. If there is at

least one informed advertiser, constrained advertisers bid (1 − κ)c. If there is no in-

formed advertiser, constrained advertisers bid κp + (1 − κ)c. For n1, n2 ≥ 1: V CV
IA =

(κ+ (1− κ)E[c]) · p+ (1− κ)E[c] · (1− p) = κp+ (1− κ)E[c].

– Partial Information (PI): All advertisers bid κp + (1 − κ)c. For n1, n2 ≥ 1: V CV
PI =

κp+ (1− κ)E[c].

We can see that V CV
FI = V CV

IA = V CV
PI .

� Independent b-values (IV): Advertisers have valuations κbi + (1− κ)c.

– Full Information (FI): All advertisers bid their valuation κbi+(1−κ)c. For n1, n2 ≥ 1:

V IV
FI = (κ+ (1− κ)E[c]) ·

(
1− (1− p)n1+n2

)
+ (1− κ)E[c] · (1− p)n1+n2

= κ
(
1− (1− p)n1+n2

)
+ (1− κ)E[c].

– Information Asymmetry (IA): Informed advertisers bid their valuation κbi + (1 − κ)c.

Constrained advertisers bid κp+ (1− κ)c. For n1, n2 ≥ 1:

V IV
IA = (κ+ (1− κ)E[c]) · (1− (1− p)n1) + (κp+ (1− κ)E[c]) · (1− p)n1

= κ
(
1− (1− p)n1+1

)
+ (1− κ)E[c].

– Partial Information (PI): All advertisers bid κp + (1 − κ)c. For n1, n2 ≥ 1: V IV
PI =

κp+ (1− κ)E[c].

Since 1− (1− p)n is an increasing function in n ≥ 0, it follows that V CV
FI ≥ V CV

IA ≥ V CV
PI .
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