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Abstract

We examine the effect of the presence of expert buyers on other buyers, the platform,
and the sellers in online markets. We model buyer expertise as the ability to accurately
predict the quality, or condition, of an item, modeled as its common value. We show
that nonexperts may bid more aggressively, even above their expected valuation, to
compensate for their lack of information. As a consequence, we obtain two interesting
implications. First, auctions with a “hard close” may generate higher revenue than
those with a “soft close”. Second, contrary to the linkage principle, an auction platform
may obtain a higher revenue by hiding the item’s common-value information from the
buyers. We also consider markets where both auctions and posted prices are available
and show that the presence of experts allows the sellers of high quality items to signal
their quality by choosing to sell via auctions.
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1 Introduction
The advent of online auctions such as those in eBay led to the first massive-scale deployment
of simple second-price auction mechanisms for consumer products. Even though eBay started
as a platform for consumer-to-consumer auctions for selling items out of one’s garage, it is
now a large selling platform enabling over $200 billion commerce volume and reaching over
200 million users annually.1 The addition of posted-price sales has fueled this growth by
allowing it to serve as a competitor to other online retail sites. The growth of this new
segment of online markets that combine auctions with posted prices raises important new
questions about the optimal strategies for buyers and sellers as well as questions about the
best design of the platform.

The eBay auction format enforces a “hard close” or ending time at which the item is
sold to the highest (winning) bid. In the hours leading up to closing time, the auction is
open and simulates the open outcry English auction. If all bidders had only private values,
traditional auction theory dictates that the dominant strategy for every bidder is to bid up to
his true value. To enable this, eBay offers a proxy bidding tool that allows a bidder to specify
his maximum value, and the tool automatically bids the minimum bid increment above the
current highest bid (as long as it is below the bidder-specified value). Thus, it was something
of a paradox when a majority of eBay auctions exhibited sniping – the phenomenon where a
bidder submits his only bid in the last few seconds of the auction, thus avoiding any response
from other bidders.

While several explanations for this behavior have been advanced, one of the most intuitive
and accepted ones is that of experienced bidders (Wilcox, 2000) or dealers/experts (Roth
and Ockenfels, 2002). For example, Roth and Ockenfels (2002, p. 1095) argue, and provide
empirical evidence, that the existence of sniping in online markets is partly due to buyers’
heterogeneity in their experience with online markets and their expertise in the product
category: “[T]here may be bidders who are dealers/experts and who are better able to
identify high-value antiques. These well-informed bidders...may wish to bid late because
other bidders will recognize that their bid is a signal that the object is unusually valuable.”

In this line of reasoning, the item auctioned off is assumed to have a common value
which these experts have a better knowledge of, and submitting a sniping bid is a way for
experts to withhold this information to reap the advantage of this information asymmetry
in the resulting price. While several papers have subsequently built upon and refined this
explanation of sniping (Bajari and Hortacsu, 2003; Rasmusen, 2006; Ockenfels and Roth,
2006; Hossain, 2008; Ely and Hossain, 2009), all of them have examined the phenomenon
only from the bidders’ perspective. More broadly, to best of our knowledge, no other paper
has studied the strategic impact of buyers’ heterogeneity in expertise (which causes the
sniping behavior) on the platform and sellers’ strategies in online markets. In this paper,
we examine the effect of the existence of expert buyers on all of the stakeholders in online
markets: the expert and nonexpert buyers, the sellers, and the platform. We discuss the
following research questions:

1. How do nonexpert buyers adjust their strategies to compete with experts?
1http://venturebeat.com/2013/10/16/ebay-earnings-sales-up-21-revenue-up-14-and-double-

digit-paypal-user-growth/ (accessed January 2016)
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2. How does the presence of experts affect the platform revenue?

3. How does the presence of experts affect the sellers’ strategies in online markets?

1.1 Our Contributions
First, we show that the presence of experts encourages the nonexperts to bid more aggres-
sively. In particular, we show that because of the sniping strategy of the expert buyers in
hard-close auctions, nonexpert buyers have to bid more than their expected value; otherwise
they only win items of low quality against the expert buyers. Quantifying this, we show
in Proposition 1 that the higher the proportion of experts among the bidders, the more
aggressively the nonexperts bid above their expected value for the item.

Next, we consider the impact of the presence of experts on the platform’s strategies. In
particular, should the platform maintain the hard-close format for the auction, which allows
the experts to snipe, rather than switch to the “soft-close” format? Also, if the platform
knows the quality value of the item and can credibly reveal it to the buyers, should it commit
to sharing this information with them? We find interesting answers to these questions.
Regarding the first question, at the outset, it appears that the hard-close format may hurt
platform revenue since without the sniping behavior of experts, nonexpert buyers could
respond to bids of experts, and the item would sell at a higher price. Since the platform’s fee is
usually a fixed fraction of the selling price, the platform would then have an incentive to favor
the soft-close format.2 Contrary to this expectation, we show that the aggressive bidding
behavior of the nonexperts that we describe above implies that the platform’s overall revenue
increases in the hard-close format for a wide range of parameter values (Proposition 2). This
is a potential new explanation as to why online auction companies such as eBay3 retain the
hard-close auction format from a revenue perspective. We note, however, that the strategic
choice of soft- versus hard-close format is a complex decision affected by competition among
auction platforms as well as a variety of other bidder considerations such as the avoidance
of potentially costly bidding wars in hard-close auctions. Our observation above exposes a
new facet in a variety of such potential explanations for the popularity of this format.

This result has another important and interesting implication regarding the second ques-
tion: the platform can benefit from committing to withholding the quality information
(Corollary 1). This is in contrast to the celebrated linkage principle4 (Milgrom and We-
ber, 1982), and is driven by buyers’ heterogeneity in their level of expertise. Proposition 1
can also be interpreted as a reverse winner’s curse. In auctions with common values, bidders
bid lower than their valuation to avoid the winner’s curse. However, our result shows that
when bidders are heterogeneous in their level of information, non-informed bidders bid more
than their valuation to make up for their lack of information.

Finally, we consider the impact of the presence of expert buyers on the sellers’ strategies.
In particular, we investigate the choice of selling mechanisms between the auction and a

2In fact, some auction platforms such as the now defunct Amazon Auctions and Trademe, removed sniping
by implementing a soft close that automatically extended the auction time whenever a bid is submitted.

3EZsniper.com provides an extensive list of auction sites with a hard close.
4The linkage principle argues that the auction house always benefits from committing to revealing all

available information.
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posted price sale when they are both available (as is common in most online auction-houses).
In the presence of expert buyers, under certain conditions, we show that by selling in an
auction, a seller can credibly signal5 the quality value of his item (Proposition 3). By selling
in an auction, the seller shows that he can rely on the market (specifically, on the expert
buyers) to decide the value of the item. This is a risk that a seller with a low quality-value
item cannot take. Furthermore, this signaling is possible only if there are enough experts,
who know the value of the item, in the market. Otherwise, the seller of a high quality-value
item will not be able to separate himself from the seller of a low-value item. In other words,
the existence of experts in the market allows the sellers of high-quality products to separate
themselves by selling in auctions. This finding is in line with auction houses’ claim that
auctions increase buyers’ confidence. For example, Fraise Auction6 argues that one of the
benefits of selling in auction is that the “competitive bidding format creates confidence among
the buyers when they see other people willing to pay a similar amount for the property.”
To best of our knowledge, this result is a new explanation for the popularity of auctions in
certain product categories. We reiterate that the strategic choice of auction versus posted-
price is a complex decision affected by several factors. Our observation above proposes a
new explanation for why some sellers may choose to use auctions.

Taken together, we initiate the first comprehensive study of the effect of the presence of
expert buyers in online markets featuring auctions with a hard close and posted prices, and
establish the following results.

1. Nonexpert buyers must adjust their strategies in response to experts’ sniping, and,
under certain conditions, have to bid more than their expected value in hard-close
auctions in equilibrium.

2. As a consequence, the platform revenue is higher in the hard-close auction than in the
soft-close format for a wide range of parameter values.

3. Finally, the presence of experts in markets with hard-close auctions and posted prices
allows the seller of high-quality items to credibly signal the quality of the item by
selling in the auction and separating himself from sellers of low-quality items who sell
using posted prices, under certain conditions.

Note that despite the explosive growth of auctions particularly in the consumer-to-consumer
arena, our findings are relevant mainly to items with a significant common value component
(such as collectibles, antiques, art, and used items of uncertain quality).

In what follows, we review related literature. Section 2 introduces the main model,
Section 3 solves the equilibria of the model with a hard close, and Section 4 compares them
with the corresponding equilibria of the auction with a soft close, which does not allow
for sniping. In Section 5, we analyze the sellers’ game of choosing among selling formats.
We conclude the paper in Section 6. All proofs and further details are relegated to the
Appendices.

5Note that the signal that we discuss here is the seller’s choice of the selling mechanism. This is different
from bids by other bidders, which can also be signals of the quality of the product.

6http://fraiseauction.com/why-auction/ (accessed January 2016)
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1.2 Related Literature
Our work relates to the literature on online auctions with common values and a hard close,
intermediaries’ incentives to reveal product quality information, sellers’ strategies to signal
product quality, and the advantages and disadvantages of auctions versus posted prices. In
the following, we review the related literature on each topic.

Bajari and Hortacsu (2003) argue that last-minute bidding is an equilibrium in a stylized
model of eBay auctions with common values. They develop and estimate a structural econo-
metric model of bidding in eBay auctions with common value and endogenous entry. Wilcox
(2000) and Rasmusen (2006) use common values to model sniping and bidders’ behavior on
Ebay auctions. Wilcox (2000) shows that sniping increases as buyers’ experience increases.
Furthermore, the increase in the sniping behavior of the more experienced bidders is more
pronounced for the type of items that are more likely to have a common value component.
Similarly, a model with no common value as in Yoganarasimhan (2013) demonstrates no
sniping behavior. Rasmusen (2006) considers a model where bidders incur a cost for learn-
ing the common value of the item. As a result, those who acquire the information snipe
to hide their information from other bidders. Similar to the previous literature,7 sniping
emerges as an equilibrium strategy in our model as well. However, our focus is the effect of
the presence of experts on nonexperts’, sellers’, and the platform’s strategies and revenues,
which is crucially missing in the earlier literature. Glover and Raviv (2012) show that when
sellers can choose between hard-close and soft-close formats, soft close leads to a higher
revenue, and experienced sellers are more likely to choose soft close. We discuss their result
in Section 5, and show that soft close emerges as the unique pooling equilibrium if sellers
can choose the closing format. Our result provides a new theoretical explanation for their
empirical findings. In contrast to earlier work by Ockenfels and Roth (2006), who show an
example in which seller revenue is lower at the equilibrium for hard-close than in the soft-
close case, in our model, we show that the hard-close format increases revenue compared to
the soft-close format. More specifically, we provide an explanation as to why online auction
companies such as eBay retain the auction format that allows for sniping from a revenue
perspective that takes into account the aggressive bidding behavior of the nonexperts.

In this paper, we show that an intermediary could benefit from withholding information
about the quality of the items in an auction. This is in contrast with the well-known linkage
principle by Milgrom and Weber (1982). The linkage principle argues that the auction house
always benefits from committing to reveal all available information. The intuition behind
the principle is that revealing the information can mitigate the winner’s curse and motivates
the buyers to bid more aggressively. We arrive at the contrast due to buyers’ heterogeneity
in terms of their information about the quality value of the item, as modeled by their
expert status. More specifically, the result of Milgrom and Weber (1982) is established
when valuation of bidders depend symmetrically on the unobserved signals of the other
bidders, a condition that is not satisfied in our setup.8 Withholding information, under

7The literature on trying to explain sniping in online auctions is vast. Other than previously mentioned
papers, see also Ockenfels and Roth (2006), Hossain (2008), Wintr (2008), and Ely and Hossain (2009).

8Failure of the linkage principle has also been argued in a few other papers in the auction theory literature.
For example, Perry and Reny (1999), Krishna (2009, Chapter 8.1), and Fang and Parreiras (2003) show the
failure in setups with multiple items, ex-ante asymmetries, and budget constraints, respectively.
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certain circumstances, has also been shown to increase social welfare, by Zhang (2013), in
the context of product labeling. Gal-Or et al. (2007) show that, under certain conditions, a
buyer benefits from withholding information in procurement schemes.

Many researchers in marketing have studied signaling unobserved quality under informa-
tion asymmetry. Moorthy and Srinivasan (1995) and Soberman (2003) show that sellers can
use warranties such as money-back guarantees to signal the quality of their items. Bhardwaj
and Balasubramanian (2005) show that by letting the customers request information about
an item, rather than revealing it without solicitation, a seller can signal the quality of his
item. Mayzlin and Shin (2011) show that uninformative advertising, as an invitation for
search, can be used to signal product quality. Li et al. (2009) investigate auction features
such as pictures and reserve price that enable sellers to reveal more information about their
credibility and product quality, and empirically examine how different types of indicators
help alleviate uncertainty. Finally, Subramanian and Rao (2016) show that, by displaying
daily deal sales, a platform can leverage its sales to experienced customers to signal its type
and attract new customers. This is relevant to our result as in both Subramanian and Rao’s
paper and our paper, the existence of experts (or experienced customers) can help the sell-
ers to extract more revenue from the nonexpert customers. However, the higher revenue is
achieved using very different tools, displaying daily deal sales versus selling in auctions, in
the two papers. Compared to the previous literature, we introduce a new dimension for sell-
ers to signal the quality of their items. In particular, for product categories with a common
value component where assessing the common value needs expertise (e.g., in the antiques
category), we show that selling via auction can signal that the item has a high common
value.

Finally, we review the related literature that compares auctions to posted price selling
mechanisms. Einav et al. (2013) propose a model to explain the shift from Internet auctions
to posted prices and consider two hypotheses: a shift in buyer demand away from auctions,
and general narrowing of seller margins that favors posted prices. By using eBay data, they
find that the former is more important. There is a significant economics literature that
compares auctions to posted price mechanisms. Notably, Wang (1993) compares auctions
with posted prices and shows that auctions become preferable when buyers’ valuations are
more dispersed. In another important paper, Bulow and Klemperer (1996) have shown that
the additional revenue one can obtain by attracting one more bidder in an auction without
reserve price is greater than the additional revenue by setting the optimal reserve price, hence
in a sense establishing that “value of negotiating skills is small relative to value of additional
competition” (p. 180). In an empirical work, Bajari et al. (2008) conclude that the choice of
sales mechanism may be influenced by the characteristics of the product being sold. To the
best of our knowledge, our paper is the first work that considers the signaling effects of the
choice of the mechanism on buyers’ beliefs. Specifically, we show that the choice of selling
mechanism can be used by sellers of high-quality items as a signal of their item’s quality.

2 Model
We consider a model with two buyers and one item. We assume that there are two types
of buyers, experts and nonexperts, and each buyer is an expert with probability p. Given
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anonymity of online marketplaces, we assume that each buyer does not know whether his
opponent is an expert or not.9

In our model, the items sold in online auctions have differing levels of “quality value,”
which may reflect the condition of a used good or the relative efficacy of a product among
its competitors. Note that this value is similar to a common value in that its benefit accrues
equally to both expert bidders (who can accurately predict quality value) and nonexpert
bidders (who do not know the quality value). We assume that the quality value, denoted by
a binary random variable C with realizations 0 and c > 0, is known only by experts and is
the same for both experts and nonexperts (therefore it can be described as a common value).
Moreover, the items sold in online auctions also have differing levels of “private value,” which
may reflect bidders’ private tastes for the items, or whether they have immediate needs for
the items. Each bidder may have a different private value. We assume that the private value,
denoted by a binary random variable V with realizations 0 and v > 0, is learned privately
by both experts and nonexperts.

The total value of the item for a bidder is the sum of the quality value and an additional
private value component. More specifically, we assume that C has a binary distribution:
Pr[C = c] = q (high common value) and Pr[C = 0] = 1 − q (low common value), also
V (for each bidder) has a binary distribution: Pr[V = v] = r (high private value) and
Pr[V = 0] = 1 − r (low private value). We assume that c, v, p, q and r are common
knowledge. Moreover, buyers’ private value types are privately known by all buyers, and
the realization of C is privately known only by experts (nonexperts know only the prior
probability distribution). The total value of the item for each bidder is simply C+V , where
C is the quality value of the item and V is the buyer’s specific private value.

We model the online auction with a hard close as a two-stage bidding game where the
second stage represents the very last opportunity to submit a bid (the sniping window),
while the first stage represents the whole window of time preceding the close. Even though
in practice the period before the sniping window is a dynamic game, we model it (Stage 1) by
allowing each bidder to submit a single bid: to reconcile this with reality, we can think of the
highest bid that a bidder submitted before the sniping window as the first-stage bid. Bidders
can observe competitors’ bids of Stage 1 and respond to them in Stage 2; however, they do
not have enough time to respond to competitors’ bids of Stage 2. It is worth mentioning
that we can derive all of our results with a more realistic dynamic game model of the first
stage.10 However, though it is a bit more involved, it does not add any further insight to our
analysis, so we use the simpler two-stage formulation here.

Motivated by the fact that bidding in the sniping window has the risk of losing the bid due
to erratic internet traffic, we assume that a bid in stage 2 goes through only with probability
1− δ for sufficiently small δ ≥ 0. Throughout the paper, we assume that 0 ≤ δ ≤ δ̄ where δ̄
is defined in Section A.3. This assumption implies that the risk of the bid not going through,
due to δ, is not large enough to outweigh the benefit of sniping for experts. We provide an
example of equilibrium structure when δ > δ̄ in Section B.2. The assumption of small δ is
also consistent with industry numbers that show that the rate of failure of sniping bids is

9On eBay and most other auction platforms, identities of bidders are revealed only after an auction ends.
Furthermore, bidders can easily hide their type by creating and using a new account online.

10We can consider a dynamic auction in the time interval [0, 1) and sniping at time 1.
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less than 1%.11

Figure 1: Timeline of the game

The timing of the model is as follows (see also Figure 1). Before Stage 1, each buyer
knows his own type (expert or nonexpert), but not the type of the other buyer. If a buyer
is an expert, he also knows the common value (whether C = 0 or C = c). All buyers also
know their buyer-specific private values (whether V = 0 or V = v). In Stage 1, both buyers
simultaneously submit their bids. After Stage 1 and before Stage 2, both buyers observe the
other buyer’s bid, and may be able to infer their opponent’s type (and values). In Stage 2,
both buyers simultaneously decide if they want to increase their bid from Stage 1, and if so
by how much. In other words, bids of Stage 2 have to be greater than or equal to bids of
Stage 1. Stage 2 bids are received by the auctioneer with probability 1 − δ. If the bid of
Stage 2 is lost for a bidder (with probability δ), the auctioneer continues to use the bid of
Stage 1 for that bidder. After Stage 2, the item is given to the buyer with the highest bid at
the price of the second-highest bid. If there is a tie between two bidders of different values,
then the item goes to the one of higher value; if both have the same value but are of different
types, the tie is broken in favor of the nonexpert; if both bidders have the same value and
type, the tie is broken randomly.12

In auctions with a soft close, there are possibly an infinite number of stages. If a bid is
submitted at any stage, bidders can submit another bid in the next stage. The game ends
when no bid is submitted in some stage. We also consider posted prices in Section 4. In this
game, the seller posts a price z and the bidders then decide whether to buy at this price.
The trade takes place at the posted price z if and only if at least one bidder is interested
in the item. If both bidders want the item, each of them gets the item with probability 1

2 .
Finally, in both types of auctions, soft and hard close, and in posted price, we assume that
the platform fee is a constant fraction ξ of the selling price and is paid by the seller.

11For example, see https://www.quicksnipe.com/faq.php (accessed January 2016).
12For a full description and motivation of the tie-breaking rule, please see Section B.3. We demonstrate

that our results continue to hold if we change the rule to break the tie in favor of experts rather than
nonexperts.
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3 Effect of Experts on Buyer Strategies
In this section, we describe the equilibria of the auction game (a formal complete treatment
is in Section A.1). We derive conditions under which experts use sniping, in equilibrium, to
protect their information about the common value of the item. Furthermore, we show that,
under certain conditions, nonexperts with high private value bid aggressively—even above
their expected valuation—to compete with experts.

We call an expert/nonexpert with high/low private value a high/low expert/nonexpert.
Our main lemma characterizing the equilibrium (Lemma 2 in Appendix A) splits the values
of v into nine ranges depending on the relative values of c, v, p, r, and q. Our characterization
labels the strategies for each of the four types of players as one of five different behaviors:
(i) a sniping strategy is adopted only by experts and involves mimicking the nonexperts in
the first stage and bidding their true value only in the second stage; (ii) a truthful strategy
involves bidding the truthful (expected) value and revising it in the second stage under
any additional relevant information; (iii) an aggressive strategy is adopted only by high
nonexperts and involves bidding over the expected value to have a chance of winning against
the experts – we discuss this strategy in detail in subsection 3.2; (iv) a mixed strategy is a
mixed version of the truthful and aggressive strategies; (v) an underbidding strategy is used
only by low nonexperts, where they bid lower than their expected value for the item.

3.1 Experts Induce Sniping
Lemma 2 presents necessary and sufficient conditions for each of the above strategies to
emerge in equilibrium for each type of bidder. In particular, we show that low experts use
the sniping strategy if and only if v ≤ c · (1−p)(1−q)r

2pq(1−r)+(1−p)r , while high experts always use a
sniping strategy.

Note that the expression c · (1−p)(1−q)r
2pq(1−r)+(1−p)r is decreasing in q and p, and increasing in r

and c. In other words, a low expert’s incentive to snipe increases as p or q decrease, and as
r or c increase.

To see why, first note that a low expert snipes only if the common value is high. A
low value of p (i.e., there are few experts in the market), a low value of q (i.e., there are
few high quality items in the market), or a high value of c (i.e., quality difference between
low-quality and high-quality items is large), all indicate that the low expert’s information,
that the common value is high, is valuable. This motivates the low expert to snipe and hide
this information. Therefore, as p decreases, q decreases, or c increases, the threshold on v for
the low expert to snipe increases. Moreover, a high value of r indicates that the opponent
is likely to have a high private value. Therefore, as r increases, the probability that the
low expert would win the item without sniping decreases, which increases his motivation to
snipe. As a result, as r increases, the threshold on v for the low expert to snipe increases.

3.2 Impact of Experts on Nonexperts’ Strategy
A high nonexpert’s optimal strategy depends on the value of v. If v is sufficiently high
(cq + v ≥ c), a high nonexpert’s expected value for the item is higher than c. In this case,
high nonexperts always win the competition against low experts. For smaller values of v,
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the situation is more interesting. By bidding their expected value against experts, high
nonexperts win only when the common value is low. Therefore, high nonexperts have to
bid higher than their expected value (aggressive strategy and mixed strategy) to win a high-
common-value item against low experts. Note that bidding above the expected value does
not necessarily mean that they have to pay more than their expected value, because the
auction format is second price. The only risk is that if two high nonexperts compete with
each other, they may both bid above their expected value and end up paying more than their
expected value. In this case, a nonexpert’s payoff could be negative. Our first proposition
discusses the conditions under which nonexperts bid more than their expected value.

v

Probability that 
a high non-

expert overbids

0

0

1

0.83 0.9

Figure 2: Probability that a high nonexpert
overbids as v increases for p = 0.3, r = 0.5,
q = 0.1, and c = 1.

p 

Probability that 
a high non-

expert overbids 

0 

0 

1 

0.8 1 

Figure 3: Probability that a high nonexpert
overbids as p increases for v = 0.5, r = 0.5,
q = 0.1, and c = 1.

Proposition 1. If the expected value of a high nonexpert for the item is less than the common
value of the item (i.e., cq + v < c), the high nonexpert may bid more than his valuation for
the item in equilibrium. Moreover, the probability of overbidding increases as the fraction of
experts in the market (i.e., p) increases.

Proposition 1 shows that if the value of v is high enough, nonexperts always take the risk
of over paying, and bid above their expected value in order to win against experts. However,
if v is not sufficiently large, a nonexpert over bids only with some probability (depicted in
Figure 2). This mixed strategy allows the nonexperts to mitigate the risk of over paying
due to competition with another nonexpert. Furthermore, Proposition 1 shows that as the
probability p that the opponent is an expert increases, a nonexpert’s willingness to take the
risk and bid above his expected value increases (depicted in Figure 3).

4 Effect of Experts on Platform Strategies
An important assumption in Proposition 1 is that experts can hide their information by snip-
ing. The platform can eliminate sniping by extending the duration of the auction whenever
a bid is submitted (this is the soft-close auction format). In this case, nonexperts always
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have enough time to respond to experts’ bids and, therefore, do not have to bid above their
expected valuation.

We show that, under certain conditions, nonexperts’ aggressive behavior leads to higher
revenue for the platform to the extent that the platform benefits from allowing sniping (by
enforcing a hard close). In other words, experts’ ability to hide their information forces the
nonexperts to bid more aggressively, and ultimately leads to higher revenue for sellers and
for the platform. This result also relates to platform strategies regarding the revelation of
information. In Section 4.3, we show the breakdown of the linkage principle by showing that
the platform may benefit from withholding quality information from the buyers when the
buyers are heterogeneous in their level of expertise.

4.1 An Auction with a Soft Close
We now consider a model in which sniping is not possible. One way to prevent sniping is by
extending the duration of the auction by a few minutes every time there is a bid near the
current end time of the auction. This auction is called an auction with a soft close and was
used by the now defunct Amazon Auctions. A way to model this is by starting with a game
that has only one stage and every time there is a bid during the current stage, the auction
extends for one more stage. In other words, every time someone makes a bid, the other
buyers can see it and respond to it. In Section 4.2, we first characterize the equilibrium for a
model of soft-close auctions—the details are in Lemma 3 in Section A.2. Then we compare
seller’s revenue and the platform’s revenue across the two models. The goal is to see which
ending rule results in better revenues for the sellers (and therefore for the platform).

4.2 Effect of Experts on Platform Revenue
Here we summarize the key implications of Lemma 3 that appears in Appendix A: when the
soft-close format is used, high nonexperts bid their expected value. If they see a bid of c,
they infer that the opponent is a low expert and the common value is high. In that case,
they increase their bid to c to win the item at price c. On the other hand, with soft close,
experts always reveal the value of a high-common-value item to nonexperts. This increases
the nonexperts willingness to pay and in some cases leads to higher revenue for the seller.
However, when there is a soft close, nonexperts do not have to bid above their valuation.
This reduces the competition and can hurt sellers’ revenue as well as the platform’s revenue.
In Lemma 1 we see that sellers can benefit from a hard close under certain conditions. We
use this lemma to analyze the platform’s incentive in having a hard close.

Lemma 1. When cq+v < c, the seller of an item with low common value always has higher
expected revenue in a hard close than in a soft close, whereas the seller of an item with high
common value has higher revenue in hard than soft close if and only if p is sufficiently large.

Lemma 1 shows that the seller of an item with low common value always benefits from a
hard close. This is intuitive because a hard close causes sniping, which prevents the flow of
information from experts to nonexperts. Therefore, when there is a hard close, nonexperts
are more likely to overpay for an item with low common value. The interesting part is
that even the seller of an item with high common value benefits from a hard close if p is
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high enough. This is because when there is a hard close, nonexperts know that they will
not be able to infer the common value, and therefore, have to bid more aggressively to win
the item. As we observe in Proposition 1, this aggressive bidding behavior increases as p
increases. If p is sufficiently large, the positive effect of this aggressive bidding behavior on
seller’s revenue can dominate the negative effect of the lack of information flow, and result
in higher revenues for the seller of a high-quality item with a hard close than with a soft
close. Using the same argument, we can see that the platform can also benefit from a hard
close when p is sufficiently large. This result is formalized in Proposition 2.

Proposition 2. If the expected value of the high nonexperts for the item is less than the
common value of the item (i.e., cq + v < c), and the fraction of experts in the market (i.e.,
p) is sufficiently large, the platform’s revenue from a hard close is higher than that from a
soft close.

A graphical illustration of Proposition 2 is depicted in Figure 4. When cq + v < c
(v/c < 0.9 in the figure), the region where a hard close provides higher revenue appears
when v is sufficiently larger than c, and p is sufficiently large. This is because higher v
and higher p both lead to nonexperts’ aggressive bidding, as we saw in Figures 2 and 3 and
Proposition 1.

v/c

p

0

0

1.5

1

Hard Close

Soft Close

Soft Close
(equivalent if δ = 0)

0.9

Figure 4: The regions are labeled with the format that provides higher revenue for the
platform (for r = 0.5 and q = 0.1). Note that 0.9 = 1− q.

Proposition 2 shows that for some items the platform’s revenue is higher in a hard close,
while for other items the revenue is higher in a soft close. Ideally, the optimal strategy
for a platform would be to use different policies for different items. However, in practice,
platforms may have to use the same policy for all items for other reasons (e.g. consistent
user experience). Therefore, the optimal policy will depend on the distribution of the items
and the volume of the transactions across the parameter space.
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4.3 Experts and the Breakdown of the Linkage Principle
Finally, we discuss the connection between the hard-close format and revelation of informa-
tion in the marketplace. Note that a hard close allows the experts to protect their information
about the value of the item. We know that the platform sometimes benefits from a hard
close. This could suggest that the platform may also benefit from withholding information
about the value of the item. This is an important implication because it is in contrast with
the well-known “linkage principle” in auction theory (Milgrom and Weber, 1982).

The linkage principle states that auction platforms (e.g., auction houses) benefit from
committing to reveal all available information about an item, positive or negative. The
platform revealing the information reduces the downside risk of winning the item, also known
as the winner’s curse. But we show that there is also a downside in revealing the information
in the presence of heterogeneous bidders, and the platform may sometimes benefit from
committing to not revealing the information.

Our result shows that when bidders are asymmetric in terms of their information about
the value of the item, bidders with less information have to bid more aggressively, otherwise,
they only win the item when bidders with more information do not want the item (i.e., the
common value is low). This aggressive behavior incentivizes the platform to withhold any
information about the quality value of an item. This result is formalized in the following
corollary.

Corollary 1. In auctions with hard close, for medium values of p and v
c
, committing to

reveal the common value to the buyers decreases platform’s revenue.

We should note that the region in Figure 4 where the hard-close format provides higher
revenue is the same as the region in Corollary 1 in which the platform prefers to withhold
the common value information.

Our model is different from the model in Milgrom and Weber (1982) in several aspects.
However, the breakdown of the linkage principle is due to only two differences in modeling
assumptions. First, we allow the bidders to be heterogenous in terms of their information
about the value of the item. Second, bidders do not know how much information other
bidders have in this regard. We can show that even in a sealed bid second price auction,
a special case of the model in Milgrom and Weber (1982), introducing these two aspects
can lead to the breakdown of the linkage principle. Furthermore, both of these aspects are
required for the linkage principle to break down. In particular, if bidders are asymmetric
in terms of how much information they have about the value of the item, but they know
how much information other bidders have (e.g., whether the opponent is an expert or not),
Campbell and Levin (2000) establish that the linkage principle still holds.

Finally, note that Corollary 1 applies only to settings in which the platform has access
to some valuable information about the item that is not easily available to all the bidders.
For example, using historical market data, eBay provides a quality score for used items in
certain categories. Another example is the free vehicle history reports that eBay provided
for some time but later discontinued.13

13http://announcements.ebay.com/2009/11/free-vehicle-history-reports-on-ebay-motors/
(accessed January 2016)

13
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So far we have discussed the effect of the existence of experts on nonexperts’ and the
platform’s decisions. In Section 5, we analyze the effect of experts on sellers’ choice of selling
mechanism. In particular, we show that the existence of experts can help the sellers of items
with a high common value to signal the value of their items to nonexperts.

5 Effect of Experts on Seller Strategies
In this section, we show that the existence of experts in the market could help the sellers to
signal the quality/common value of their item to nonexperts. We look at sellers’ choice of
selling mechanism between an auction and a posted price sale.14 We call the seller of an item
with high common value a high-type seller, and the seller of an item with low common value
a low-type seller. A seller is high-type with probability q where q is common knowledge.
A seller naturally knows his own type; experts also know the seller’s type (since they know
the common value of items being offered). But nonexperts do not know the seller’s type.
We investigate whether a seller can signal his type using the selling mechanism (auction
versus posted price). In particular, we derive conditions for the existence of a separating
equilibrium. We show that existence of enough experts in the market is a necessary condition
for a separating equilibrium to exist; furthermore, when the fraction of experts in the market,
p, is sufficiently large, a separating equilibrium exists only for moderate values of v

c
.

A seller sets his selling mechanism M (posted price or auction). In case of posted price,
M also includes the price. For a mechanism M , we assume that all nonexperts have the
same belief about a seller who uses M . In general, nonexperts’ belief about a mechanism is
the probability that they think a seller using that mechanism is a high type. However, since
we consider only pure strategy Nash equilibria of the game, the nonexperts’ belief about a
mechanism is limited to three possibilities: Low (L), High (H), and Unknown (X). In belief
L, nonexperts believe that a seller using mechanism M is always a low-type seller. In belief
H, nonexperts believe that a seller using mechanism M is always a high-type seller. Finally,
in belief X, nonexperts cannot infer anything about the seller’s type and believe that the
seller is high-type with probability q.

Nonexperts have beliefs about each mechanism M . In equilibrium, the beliefs must be
consistent with the sellers’ strategies. In particular, if both types of sellers use the same
mechanism in (a pooling) equilibrium, the nonexperts’ belief for that mechanism must be
X. If the two types of sellers use different mechanisms in (a separating) equilibrium, the
nonexperts’ belief for the mechanism used by the low-type seller must be L and for the
mechanism used by the high-type seller must be H. Furthermore, in an equilibrium, given
the nonexperts’ beliefs, sellers should not be able to benefit from changing their strategies.

Note that sniping is relevant only when the buyers’ belief about some mechanism M is
X. Therefore, in a separating equilibrium, the platform’s decision on whether to use a soft or
hard close does not affect buyers’ equilibrium behavior or sellers’ strategies. In other words,
the following analysis applies to both soft- and hard-close cases.

In general, signaling games can have infinitely many equilibria, supported by different
out-of-equilibrium beliefs in the game. Therefore, proving just the existence of an equilibrium

14In Section B.5, we further consider the seller’s choice of closing format (hard versus soft) as a signaling
mechanism.
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with certain characteristics may not be a strong result. To further strengthen the support
for our result that selling in auction can be used by high-type sellers as a signal of quality, we
show that, under certain conditions, such an equilibrium is the only separating equilibrium
that survives the “Intuitive Criterion” refinement. The Intuitive Criterion, introduced by
Cho and Kreps (1987), is an equilibrium refinement that requires out-of-equilibrium beliefs
to place zero weight on types that can never gain from deviating from a fixed equilibrium
outcome. The Intuitive Criterion has been used in various signaling papers in the marketing
literature including, but not limited to, Simester (1995), Desai and Srinivasan (1995) and
Jiang et al. (2011).

Proposition 3 below shows that when the fraction of experts in the market is sufficiently
large and the value of v

c
is moderate, there exists a unique separating equilibrium in which

a high-type seller chooses an auction and a low-type seller chooses posted price as their
respective selling mechanisms. A proof and related analysis are provided in Section A.4.
Figure 5 shows the regions in which this separating equilibrium exists and is unique as a
function of p and v/c.

Let us define

ν1 = min
(

(1− p)(1− p(1− 2r(1− r)))
2r(1− r) ,

(1− p)2

2(1− p(1− p))(1− r)r

)
,

ν2 = min
(

(1− pr)2

r(p(2− pr)− r) ,
1

2r(1− r)

)
,

ν3 = min
(

1− r
2r ,

(1− p)(2− r(1− p))
r (4 + (2− p(2− p))r2 − 2r(3− p))

)
.

Proposition 3. If v
c
∈ [ν1, ν2], there exists a separating equilibrium in which a high-type

seller uses an auction and a low-type seller uses a posted price v. Furthermore, if v
c
∈ (ν1, ν3),

this is the only separating equilibrium that survives the Intuitive Criterion refinement. Fi-
nally, there exists no separating equilibrium in which a low-type seller uses an auction.

The proof and a more elaborate discussion of Proposition 3 are relegated to Appendix A.
The intuition behind the proof of Proposition 3 is as follows. First, note that in general, an
auction is more favorable to a high-type than a low-type seller. This is because, in auctions,
the price is determined by bidders, and expert bidders do not bid high when the seller is low-
type. This allows the high-type seller to separate himself from the low-type seller by selling
in an auction. But for this separating equilibrium to exist, the low-type seller’s incentive to
mimic has to be sufficiently low and the high-type seller’s incentive to separate has to be
sufficiently high. These two forces give us the thresholds ν1 and ν2 for existence (and ν3 for
uniqueness under IC refinement) of this equilibrium.

In a separating equilibrium, even nonexperts know that the low-type seller is a low type.
Hence, nonexperts are willing to pay at most v for the item sold by the low-type seller.
Therefore, the low-type seller’s incentive to mimic increases as v or p decreases. If p and
v are sufficiently small, since the low-type seller’s incentive to mimic is sufficiently large, a
separating equilibrium does not exist. This is captured by condition v

c
≥ ν1 in Proposition 3,

and is represented by the left contour in Figure 5.
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Figure 5: The graph shows the existence and uniqueness of a separating equilibrium in which
the high-type seller uses auction and the low-type seller uses posted price, assuming r = 1

4 .

On the other hand, as v
c
increases, the common value matters less, and the high-type

seller’s incentive to signal his type (and to separate himself) decreases. When v
c
is large

enough, we show that the high-type seller chooses to sell via an auction only if p is sufficiently
small. This gives us the second condition for existence of this separating equilibrium, namely,
v
c
≤ ν2. The condition for uniqueness of the equilibrium, v

c
≤ ν3, follows a similar intuition.

It is interesting to note that the seller’s strategy in a separating equilibrium, and the
conditions for existence of this equilibrium, do not depend on q. Intuitively, this is because
buyers can always infer the seller’s type in a separating equilibrium; therefore, when consid-
ering the seller’s strategy and possible out-of-equilibrium deviations, the ex-ante probability
that the seller is high type does not matter.

A Note on Hard- vs. Soft-close Formats. In this section, motivated by eBay’s platform,
we studied sellers’ choice of auction versus posted price. It is theoretically interesting to
know what happens, when limited to using auctions, if sellers can choose between hard-close
and soft-close formats.15 This is the mechanism that was employed by the now defunct
Yahoo Auctions. In Section B.5, we show that if sellers can choose between soft-close and
hard-close formats, the only equilibrium that survives D1 criterion refinement16 is the one in
which both types of sellers use the soft-close format (as a pure strategy pooling equilibrium).
Furthermore, nonexperts’ belief in the hard-close format will be low. This implies that sellers

15We are grateful to an anonymous referee for suggesting this question.
16Intuitively, D1 equilibrium refinement requires out-of-equilibrium beliefs to be supported on types that

have the most to gain from deviating from a fixed equilibrium. For an extended discussion, see Fudenberg
and Tirole (1991, Section 11.2).
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who choose the hard-close format (out of equilibrium) will earn less revenue in expectation.
Our results are consistent with the empirical findings of Glover and Raviv (2012) that show
that the soft-close format leads to higher revenue than the hard-close format, and that sellers
with less experience are more likely to use the hard-close format. Our explanation, however,
is different from theirs, as we attribute the revenue difference to buyers’ beliefs and the
underlying signaling mechanism as opposed to sniping.

6 Conclusion
In this paper, we examined important questions for the buyers, sellers, and the platform
of an online market supporting auctions and posted prices. We answered questions about
optimal behavior for each of them using the well-documented presence of expertise among
the bidders as the key underlying assumption. In particular, we studied the impact of the
presence of expert bidders in online markets using a simple model of auctions with a hard
close and posted prices. Motivated by large number of used items sold in online markets such
as eBay.com, we supposed that items have differing levels of “quality” (which we model as
common values), and different bidders have different capacities (which we model as expertise)
to predict the quality. Bidders with low expertise may be affected by bids earlier in the
auction, as these can be interpreted as signals for the quality of the item. In our model,
sniping emerges as an equilibrium strategy for experts to hide their information about the
quality of the item in hard-close auctions.

Our results provide several important managerial implications.

• We show that, as a consequence of sniping behavior in equilibrium by the experts in
hard-close auctions, nonexpert buyers with less information have to bid aggressively,
i.e., more than their expected value. This result highlights the compensatory behavior
adopted by the large majority of bidders (nonexperts) that arises endogenously in these
common marketplaces.

• Surprisingly, given the aggressive behavior of nonexperts, the platform’s revenue can
be higher in hard-close auctions (where sniping is prevalent) than in soft-close auctions
(where sniping cannot happen). This is a new, as-yet unexplored addition to the variety
of explanations of why many online auction sites use the hard-close rather than the
soft-close format.

• Another interesting implication of nonexperts’ aggressive behavior is that the platform
can benefit in its revenue from committing to hide the information. This result has
important managerial implications, as it suggests that when buyers are heterogeneous
in terms of their information about the value of the item, the linkage principle does
not always hold.

• When sellers can choose between auction and posted-price formats, a seller may be
able to signal the high quality (or authenticity) of his item to the buyers by selling
in an auction and thus separate himself from low-quality-item sellers as long as there
are enough experts in the market. This provides useful guidance to vendors in such
markets, where the magnitude and extent of these decisions can be moderated based
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on the degree and extent of the presence of expert buyers in the mix. This result also
provides a new explanation for the success of auctions in categories such as antiques,
art, and collectibles, where common value and therefore expertise are important.

Collectively, our work sheds light on the important differences that arise when knowledgeable
or expert buyers are introduced to online marketplaces, and leads to useful guidelines for all
participants in such markets.
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A Appendix
In this appendix, we present detailed explanations of the results. First, we discuss the
analyses and proofs of Sections 3 and 4, in Sections A.1 and A.2, respectively. Then, we
provide details of the role of the parameter δ in our model in Section A.3. Finally, in
Section A.4, we detail the results of Section 5. Some of the proofs and longer discussions are
relegated to Appendix B.

A.1 Analyses and Proofs of Section 3
In this section, we formally characterize the equilibria of the auction game.

Based on the relation of the parameters c, v, p, r, and q, we split the set of possible
parameter values into nine mutually exclusive and collectively exhaustive ranges. In the first
four ranges, we have that cq + v < c and v < cq; in the next two, we have cq + v < c and
v ≥ cq, in the next two, we have cq + v ≥ c and v < cq, and in the last range, we have
cq + v ≥ c and v ≥ cq.

Consider the function

f(c, p, r, q) = c · (1− p)(1− q)r
2pq(1− r) + (1− p)r .

Let m1 = f(c, p, r, q),m2 = f(c, p, 1 − r, 1 − q),M1 = f(c, p, 1, q) = c · (1 − q), and M2 =
f(c, p, 1, 1−q) = c·q. It is easy to verify thatm1 ≤M1 andm2 ≤M2. We consider nine differ-
ent cases as follows: v ∈ [0,min{m1,m2}), v ∈ [m1,min{m2,M1}), v ∈ [m2,min{m1,M2}),
v ∈ [max{m1,m2},min{M1,M2}), v ∈ [M2,m1), v ∈ [max{m1,M2},M1), v ∈ [M1,m2),
v ∈ [max{m2,M1},M2), and v ∈ [max{M1,M2},+∞).

To describe an equilibrium, we use the notation (s1, s2, s3, s4), which means that a high
expert follows the strategy s1, a low expert follows the strategy s2, a high nonexpert the
strategy s3, and a low nonexpert the strategy s4. For the bidding strategies of each type we
use the following notation:

• For a high expert, consider the following strategies:
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– sHE1 : If C = 0, he bids v in the first stage and does nothing in the second stage. If
C = c, he bids cq+ v in the first stage and bids c+ v in the second stage (sniping
strategy).

– sHE2 : If C = 0, he bids v in the first stage and does nothing in the second stage.
If C = c, he bids c in the first stage and bids c + v in the second stage (sniping
strategy).

• For a low expert, consider the following strategies:

– sLE: If C = 0, he does nothing. If C = c, he bids cq + v in the first stage and c
in the second stage (sniping strategy).

– tLE: If C = 0, he does nothing. If C = c, he bids c in the first stage and nothing
in the second stage (truthful strategy).

• For a high nonexpert, consider the following strategies:

– xHNE: He bids cq + v in the first stage. If he sees a bid other than 0, v, cq, or
cq + v in the first stage, he bids c + v in the second stage. Otherwise, he bids c
in the second stage with probability 1 − a, where a = 1 − 2p(1−r)qv

(1−p)r(c−(cq+v)) (mixed
strategy).

– oHNE: He bids c in the first stage. If he sees a bid other than 0, v, cq, or c in the
first stage, he bids c + v in the second stage. Otherwise, he does nothing in the
second stage (aggressive strategy).

– tHNE: He bids cq + v in the first stage. If he sees a bid other than 0, v, cq, c, or
cq + v in the first stage, he bids c+ v in the second stage (truthful strategy).

• For a low nonexpert, consider the following strategies:

– xLNE: He bids v in the first stage. He bids cq in the second stage with probability
1− g, where g =

2pr(1−q)v
(1−p)(1−r)(cq−v)−δ

1−δ (mixed strategy).
– uLNE: He bids v in the first stage and nothing in the second stage (underbidding

strategy).
– tLNE: He bids cq in the first stage and nothing in the second stage (truthful

strategy).

We describe equilibrium bidding strategies for buyers in the nine cases in the following
lemma.

Lemma 2. For the auction model described in Section 2, the buyers’ equilibrium bidding
strategies are given below.

1. If v ∈ [0,min{m1,m2}), the set of strategies (sHE1 , sLE, xHNE, xLNE) forms an equilib-
rium.

2. If v ∈ [m1,min{m2,M1}), the set of strategies (sHE2 , tLE, oHNE, xLNE) forms an equi-
librium.
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3. If v ∈ [m2,min{m1,M2}), the set of strategies (sHE1 , sLE, xHNE, uLNE) forms an equi-
librium.

4. If v ∈ [max{m1,m2},min{M1,M2}), the set of strategies (sHE2 , tLE, oHNE, uLNE) forms
an equilibrium.

5. If v ∈ [M2,m1), the set of strategies (sHE1 , sLE, xHNE, tLNE) forms an equilibrium.

6. If v ∈ [max{m1,M2},M1), the set of strategies (sHE2 , tLE, oHNE, tLNE) forms an equi-
librium.

7. If v ∈ [M1,m2), the set of strategies (sHE1 , tLE, tHNE, xLNE) forms an equilibrium.

8. If v ∈ [max{m2,M1},M2), the set of strategies (sHE1 , tLE, tHNE, uLNE) forms an equi-
librium.

9. If v ∈ [max{M1,M2},+∞), the set of strategies (sHE1 , tLE, tHNE, tLNE) forms an equi-
librium.

The proof of Lemma 2 is relegated to Section B.1.

Proof of Proposition 1. This result comes directly from Lemma 2. We can see that when
m1 ≤ v < M1, nonexperts overbid all the time, and when v < m1, they overbid with some
probability. We can check in the proof of Lemma 2 that the probability of over bidding is
1− a = 2p(1−r)qv

(1−p)r(c−(cq+v)) . It is easy to see that this is an increasing function on p.

A.2 Analyses and Proofs of Section 4
A.2.1 Expert strategies for soft-close auctions

As before, for the bidding strategies of each type of buyer, we use the following notation:

• For a high expert, consider the following strategy:

– t′HE: If C = 0, he bids v in the first stage and nothing later. If C = c, he bids
c+ v in the first stage and nothing later (truthful strategy).

• For a low expert, consider the following strategy:

– t′LE: If C = 0, he does nothing. If C = c, he bids c in the first stage and nothing
later (truthful strategy).

• For a high nonexpert, consider the following strategy:

– t′HNE: He bids cq+ v in the first stage. If he sees a bid of c or c+ v at some point
and cq + v < c, he bids c in the next stage (truthful strategy).

• For a low nonexpert, consider the following strategies:

– x′LNE: He bids v in the first stage. In the second stage, he bids cq with probability
1− w, where w = 2pr(1−q)v

(1−p)(1−r)(cq−v) , and nothing later (mixed strategy).
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– u′LNE: He bids v in the first stage and nothing later (underbidding strategy).
– t′LNE: He bids cq in the first stage and nothing later (truthful strategy).

Lemma 3. In a platform with soft close,

1. if v ∈ [0,m2), the set of strategies (t′HE, t′LE, t′HNE, x′LNE) forms an equilibrium;

2. if v ∈ [m2,M2), the set of strategies (t′HE, t′LE, t′HNE, u′LNE) forms an equilibrium;

3. if v ∈ [M2,+∞), the set of strategies (t′HE, t′LE, t′HNE, t′LNE) forms an equilibrium.

Proof. With soft close, an expert is going to bid his true valuation at some point, because
anything less than the true valuation will result in a lower payoff. If there is a nonexpert
opponent he is going to respond to that; therefore the expert may as well bid truthfully from
the first stage. More specifically, the strategies for the experts will be as follows:

• High Expert: If C = 0, bids v in the first stage and nothing later. If C = c, bids c+ v
in the first stage and nothing later (strategy t′HE).

• Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and nothing
later (strategy t′LE).

For the high nonexpert, the strategy is simple as well. He will bid his expected valuation in
the first stage, which is cq + v. If the opponent bids c or c+ v in the first stage (or at some
later point), he will understand that he is an expert and that C = c, therefore if cq + v < c
he will bid c in the next stage (the minimum possible bid that maximizes his payoff). This
is strategy t′HNE.

If cq ≤ v (i.e. v ≥ M2), then a low nonexpert will bid his expected valuation in the first
stage, which is cq, and then he will not do anything (strategy t′LNE). Because, even if, for
example, he sees a bid of c and realizes that the common value is high, by bidding c and
winning the item, his payoff is still 0.

If v < cq (i.e. v < M2), then a low nonexpert doesn’t want to bid cq from the beginning
because if the opponent is a high expert and C = 0, he will end up with negative payoff. So,
he bids v in the first stage, i.e., the maximum he can without the risk above, and waits. If
he sees a bid other than v from the opponent, he will lose anyway, so it doesn’t matter what
strategy he will follow next, and we assume he will follow the same strategy as if he sees a
bid of v. If he sees a bid of v, then he bids cq in the second stage with probability 1 − w.
No matter what happens in the second stage, he does nothing in the third stage. We need
now to calculate the probability w.

First of all, if he does nothing in the second stage and he sees a bid of cq, he realizes
that the opponent is another low nonexpert, but there is no reason to bid something higher
because his expected payoff will be 0. If the opponent doesn’t bid as well, then the auction
ends, and there is no third stage. Therefore, his payoff if he sees a bid of v in the first stage
and he does nothing in the second, is

pr(1− q)
pr(1− q) + (1− p)(1− r)(0)

opponent is high expert and C=0

+ (1− p)(1− r)
pr(1− q) + (1− p)(1− r)(wcq − v2 + (1− w)0

opponent is low nonexpert

).
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If he bids cq in the second stage, his payoff is

pr(1− q)
pr(1− q) + (1− p)(1− r)(−v)

opponent is high expert and C=0

+ (1− p)(1− r)
pr(1− q) + (1− p)(1− r)(w(cq − v) + (1− w)0)

opponent is low nonexpert

.

We need these two expressions to be equal, from which we get

w = 2pr(1− q)v
(1− p)(1− r)(cq − v) .

This is always non-negative, and it is < 1 iff

v <
c(1− p)(1− r)q

2pr(1− q) + (1− p)(1− r) = m2.

Therefore, if v < m2, the low nonexpert follows the strategy x′LNE.
If v ≥ c(1−p)(1−r)q

2pr(1−q)+(1−p)(1−r) = m2 (and v < M2), then it is sub optimal to bid cq, therefore
we set w = 1 (strategy u′LNE).

Proof of Lemma 1. For a low seller, a hard close is always better, because the bid of every
bidder is greater than or equal to his bid when there is a soft close.

For a high seller, we know from Proposition 1 that as p increases, high nonexperts bid
more and more aggressively. This makes the revenue higher as p increases, in the hard-close
format. Therefore, to show the result, it is enough to show that for p ≈ 1 the revenue with
hard close is better than the revenue with soft close.

When p ≈ 1, it holds that m1 ≈ m2 ≈ 0; therefore there are only two relevant equilibria
in Lemma 2 (cases 4 and 6, since it is also v < M1) and two in Lemma 3 (cases 2 and 3).
Case 4 of Lemma 2 corresponds to case 2 of Lemma 3 and case 6 of Lemma 2 corresponds to
case 3 of Lemma 3. We can see that all bids are the same in both models except the bids of
the high nonexpert, which are higher with a hard close (the high nonexpert is overbidding
in the equilibria 4 and 6 of Lemma 2). Therefore, overall the expected revenue is higher for
a high seller with the hard-close format.

This is also illustrated in Figure 6, which shows which policy gives higher revenue to the
high seller in different regions of the parameter space. Notice that this is slightly different
from Figure 4, which refers to the platform’s revenue.

Proof of Proposition 2. This result follows directly from Lemma 1. Since a low seller always
benefits from a hard close, and a high seller benefits for large p, the expected platform’s
revenue is better with a hard close for sufficiently large p.

The analogue of Figure 4 where the format that provides the higher revenue is labeled
as a function of other parameters in the model is presented in Figure 7. In particular, in
Figure 7a we can see that as r (the probability that a bidder has high private value) increases,
the region where a hard close provides higher revenue becomes smaller. This is because from
the perspective of a high nonexpert, high r means higher probability that the other bidder
is a high nonexpert too, which in turn means lower willingness to bid aggressively in the
hard-close format. This results in lower revenue for a hard close when r is large.
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(equivalent if δ = 0)
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Figure 6: The regions show whether a hard close provides higher revenue for a high seller
(for r = 0.5 and q = 0.1). This figure is slightly different from Figure 4 in that this compares
formats that provide higher revenue for a high seller versus the earlier figure that does the
same for the overall platform revenue.

Proof of Corollary 1. When the platform reveals the common value to everyone, all bidders
bid their true valuation. Therefore, in the region in which the aggressive bidding of high
nonexperts makes hard close better than soft close for the platform (the middle region in
Figure 4), the platform prefers to hide the common value so that the high nonexperts keep
bidding higher than their true valuation.

A.3 Upper-bound Condition on δ

In our model, we assume that δ is sufficiently small, i.e., δ ≤ δ̄. This upper-bound condition is
calculated as the minimum of at most three different thresholds coming from the indifference
conditions for the three of the types of players: high experts, low experts, and low nonexperts.
These are the conditions that reflect the relations between the parameter values at which
the current set of strategies are no longer in equilibrium. Intuitively, when δ > δ̄, the cost
of sniping (i.e., the risk that the bid does not go through) outweighs its benefits. Therefore,
some types of bidders decide not to snipe. Since other types of bidders know this, they
also have to update their strategies. As a result, we get different (and several cases of)
equilibrium structures for δ > δ̄. We provide an example of this in Section B.2.

A thorough discussion and calculation of the thresholds for δ̄ is deferred to Section B.2.
The exact definition of δ̄ is given in Lemma 4. To provide some intuition, in Figure 8 we
present plots of δ̄ as a function of v, of p, of q, and of r.
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(a) For p = 0.5 and q = 0.1.
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(b) For r = 0.5 and p = 0.5.

Figure 7: The regions are labeled with the format that provides higher revenue for the plat-
form. This figure is an analogue of Figure 4, presenting the same result for other parameter
variations.

A.4 Analyses and Proofs of Section 5
We use the following notation to explain the results of this section: Let πBT (M), where
T ∈ {L,H} and B ∈ {L,H,X} denote the expected profit of a seller who uses mechanism
M ∈ {A, (B, z)} (where A denotes auction, and (B, z) denotes posted price where the price
is z), has type T , and nonexperts believe has type B. LetMpool be the mechanism that both
types of sellers use in a pooling equilibrium.

The revenue of a high- or low-type seller in an auction, where nonexperts have belief high
or low, is given in the following formulas. Recall that p is the probability of being expert,
and r is the probability of having high value.

πHH (A) = c+ r2v;

πLL(A) = r2v;

πLH(A) =

cp2 + rv(2(1− p)p(1− r) + r) if v ≤ c,

cp (2(1− p)r + p− 2(1− p)r2) + r2v if v > c;

πHL (A) =

c(1− p)2 + rv(2(1− p)p(1− r) + r) if v ≤ c,

c(1− p)(p(2(1− r)r − 1) + 1) + r2v if v > c;

Similarly, the revenue of a high- or low-type seller using posted price with price z, in each
of the four cases, is
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Figure 8: Plots of the upper-bound δ̄ as a function of v, of p, of q, and of r.

πHH (B, z) =


z if z ≤ c,

(2r − r2)z if c < z ≤ c+ v,

0 otherwise;

πLH(B, z) =



(1− (1− p)2(1− r)2)z if v ≤ c and z ≤ v,

(2p− p2)z if v ≤ c and v < z ≤ c,

(2pr − p2r2)z if v ≤ c and c < z ≤ c+ v,

(1− (1− p)2(1− r)2)z if v > c and z ≤ c,

(2r − r2)z if v > c and c < z ≤ v,

(2pr − p2r2)z if v > c and v < z ≤ c+ v,

0 otherwise;
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πHL (B, z) =



(1− p2(1− r)2)z if v ≤ c and z ≤ v,

(2(1− p)− (1− p)2)z if v ≤ c and v < z ≤ c,

(2r(1− p)− r2(1− p)2)z if v ≤ c and c < z ≤ c+ v,

(1− p2(1− r)2)z if v > c and z ≤ c,

(2r − r2)z if v > c and c < z ≤ v,

(2r(1− p)− r2(1− p)2)z if v > c and v < z ≤ c+ v,

0 otherwise;

πLL(B, z) =

(2r − r2)z if z ≤ v,

0 otherwise.

Proof of Proposition 3. We prove the proposition in three parts. In part A, we show that
there is no separating equilibrium in which the high-type seller uses posted price and the low-
type seller uses auction. In part B, we show that when v ∈ [ν1, ν2], there exists a separating
equilibrium in which the high-type seller uses auction and the low-type seller uses posted
price v. Finally, in part C, we show that for v ∈ (ν1, ν3), this is the only equilibrium that
survives the Intuitive Criterion refinement.

Part A. Note that πLL(A) < πLL(B, v), which means that conditioned on the type of sellers
being revealed, the low-type seller always prefers posted price v to auction. Therefore, the
low-type seller never uses an auction in a separating equilibrium.

Part B. Note that for a separating equilibrium in which the high-type seller uses auction
and the low-type seller uses posted price to exist, the following two conditions are necessary
and sufficient:

πLL(B, z) ≤ πHL (A),

πHH (A) ≥ πLH(B, z).

The first condition guarantees that the low-type seller cannot benefit from deviating and
the second condition guarantees that the high-type seller cannot benefit from deviating.
πLL(B, z) is optimized at z = v, and is equal to (2r − r2)v. Having this less than or equal to
πHL (A), and using basic calculus, gives us the condition v

c
≥ ν1. Similarly, solving the second

inequality for v gives us condition v
c
≤ ν2. If nonexpert buyers’ beliefs are L for posted prices

and H for auction, then ν1 ≤ v
c
≤ ν2 is also sufficient for existence of this equilibrium.

Part C. Finally, we show that if ν1 ≤ v
c
≤ ν3, the separating equilibrium in which the high-

type seller uses auction and the low-type seller uses posted price is the only pure strategy
separating Nash equilibrium that survives the Intuitive Criterion refinement. Assume for
sake of contradiction that there exists another separating equilibrium. We already know
from Part A of this proof that the low-type seller cannot be using auction. Therefore, both
types must be using posted price (with different prices) in this equilibrium. Using the same
argument as in Part B of the proof, we know that the low-type seller must be using posted
price v. Suppose that the high-type seller is using posted price ζ. For this to be a separating
equilibrium, the low-type seller should not benefit from deviating and mimicking the high-
type seller: πLL(B, v) ≥ πHL (B, ζ). Using basic calculus, we can show that this implies the
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following condition on ζ. We must have ζ ≤ (r−2)v
(p−1)(pr−r+2) . Let π

∗ = πHH (B, ζ) be the profit of
the high-type seller (in the hypothetical separating equilibrium) subject to this constraint.

If πHH (A) > π∗, then the high-type seller benefits from deviating to auction unless non-
experts’ belief about auction is L. But note that if v

c
> ν1, nonexperts’ belief about auction

cannot be L according to the Intuitive Criterion refinement. Specifically, since the high-type
seller benefits from deviating to auction and the low-type seller never benefits from devi-
ating to auction even if buyers’ belief in auction is H, according to the Intuitive Criterion
refinement, buyers’ belief in auction should be H. Therefore, if πHH (A) > π∗ the high-type
seller benefits from deviating to auction and the hypothetical equilibrium cannot exist. Us-
ing basic calculus, the condition πHH (A) > π∗ reduces to v

c
≤ ν3. Therefore, for v

c
∈ (ν1, ν3),

the separating equilibrium in which the high-type seller uses auction and the low-type seller
uses posted price is the only pure strategy separating Nash equilibrium that survives the
Intuitive Criterion refinement.

B Additional Appendix
In this appendix, we first give a complete proof of the equilibrium-characterization lemma 2
in Section B.1. In Section B.2, we calculate the explicit upper bound δ̄ on the value of δ
alluded to in Section A.3. We then provide a robustness check on the choice of our tie-
breaking rule in Section B.3 by showing that the analog of the main lemma 2 continues to
hold even if we invert the tie-breaking rule to favor experts instead of nonexperts. In the
next Section B.4, we show an extrapolation of our main result for the case when the private
value distribution has a support of more than two values, thus lending support for our main
observations in the limiting continuous case. Finally, in Section B.5, we consider equilibria
when sellers sell in an auction but can choose between hard-close versus soft-close formats.

B.1 Proof of Lemma 2
Proof. We will group the nine equilibria into four cases. These are v < min{M1,M2} (equi-
libria 1, 2, 3 and 4), M2 ≤ v < M1 (equilibria 5 and 6), max{M2,M1} ≤ v (equilibrium 9),
and M1 ≤ v < M2 (equilibria 7 and 8).

Case 1. First, assume that v < min{M1,M2}. This means that cq + v < c and v < cq.
Consider the following general set of strategies:

• High Expert: If C = 0, bids v in the first stage and does nothing in the second stage.
If C = c, bids cq + v in the first stage and bids c+ v in the second stage.

• Low Expert: If C = 0, does nothing. If C = c, he bids cq + v in the first stage and c
in the second stage.

• High nonexpert: Bids cq + v in the first stage. If he sees a bid other than 0, v, cq, or
cq + v in the first stage, he bids c+ v in the second stage. Otherwise, he bids c in the
second stage with probability 1− a.

• Low nonexpert: Bids cq in the first stage with probability b and v with probability
1− b. If his bid was v, he bids cq in the second stage with probability 1− g.
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The probabilities a, b, g are as yet undetermined . For now, we just assume that a > 0.
We will examine if anyone has an incentive to change his strategy and at the same time try to
determine the probabilities and the conditions for which the above is an equilibrium. These
conditions will give us the proof that equilibria 1 and 3 are correct. Later, we will relax the
assumption on a and examine what happens when a = 0; this will lead us to conditions that
equilibria 2 and 4 are correct, and will conclude the proof of the four equilibria in the first
case.

— High Expert with C = 0: His valuation is v and now he bids v in the first stage.
If he does nothing in the first stage and he bids v in the second stage, then there is some
probability that his bid will not go through with a payoff of 0, and in the case it goes through,
his payoff would be the same in all cases as if he had bid v in the first stage (against a low
nonexpert, his payoff is 0 in both cases). Therefore, it is optimal for him to follow this
strategy.

— High Expert with C = c: His valuation is c+v and now he bids cq+v in the first stage
and bids c+ v in the second stage. We consider three alternative strategies which dominate
all the rest, and we prove that he doesn’t have any incentive to deviate to any of them.

One strategy is to bid v in the first stage and c + v in the second stage. This strategy
has a different result for him only if his bid in the second stage doesn’t go through. In that
case, by having a bid of v instead of a bid of cq + v can only decrease his payoff.

Another strategy is to bid 0 in the first stage and c + v in the second. The behavior of
the rest of the bidders will not change, but his payoff will decrease because he can lose in
some cases whereas the bid of cq + v would give him a positive payoff.

The last strategy is to bid c + v (or c) in the first stage and nothing (or c + v) in the
second. However, if we assume that his bid will go through in the second stage, with the
alternative strategy the result would be the same in all cases except in the case he faces a
high nonexpert, where his payoff strictly decreases. Therefore, since δ is sufficiently small17,
it is better to bid in the second stage.

— Low Expert with C = 0: His value is 0 and he does nothing, which is optimal for him.
— Low Expert with C = c: His value is c. The payoff if he bids c in the first stage is

A(δ) = pr((1− δ)0 + δ(c− (cq + v)))
opponent is high expert

+ p(1− r)((1− δ)0 + δ(c− (cq + v)))
opponent is low expert

+ (1− p)r((1− δ)0 + δ(c− (cq + v)))
opponent is high nonexpert

+ (1− p)(1− r)(b(c− cq) + (1− b)(g(c− v) + (1− g)(1− δ)(c− cq) + (1− g)δ(c− v)))
opponent is low nonexpert

.

The payoff with the current strategy is

B(δ) = (1− δ)
bid goes through

·
[
pr((1− δ)0 + δ(c− (cq + v)))

opponent is high expert

+ p(1− r)((1− δ)0 + δ(c− (cq + v)))
opponent is low expert

17Formally, this condition means δ < δ̄, which we discuss in Section B.2.
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+ (1− p)r(a(c− (cq + v)) + (1− a)(1− δ)0 + (1− a)δ(c− (cq + v)))
opponent is high nonexpert

+ (1− p)(1− r)(b(c− cq) + (1− b)(g(c− v) + (1− g)(1− δ)(c− cq) + (1− g)δ(c− v)))
opponent is low nonexpert

]

+ δ
bid doesn’t go through

·
[
pr((1− δ)0 + δ0)

opponent is high expert

+ p(1− r)
(

(1− δ)0 + δ
c− (cq + v)

2

)
opponent is low expert

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)(b(c− cq) + (1− b)(g(c− v) + (1− g)(1− δ)(c− cq) + (1− g)δ(c− v)))
opponent is low nonexpert

]
.

It holds that B(0)− A(0) = (1− p)ra(c− (cq + v)) > 0 (for a > 0), which means that for
sufficiently small δ, B(δ) > A(δ), i.e. the current strategy is better.

The alternative is to bid something else in the first stage other than cq+ v or c, and c in
the second, but this doesn’t increase the payoff.

— High nonexpert: His expected valuation is cq + v. Bidding something else other than
cq + v in the first stage will not change the bidding behavior of the opponent to something
better for him, therefore he prefers to bid cq + v in the first stage rather than wait.

In the second stage, it doesn’t matter what they do if they see a bid of 0 or v or cq, since
the result cannot change. If they see a bid other than 0, v, cq, or cq + v (like c or c + v),
something that doesn’t happen in the equilibrium, they assume that the common value is
high which means that their valuation is c+ v, so they bid c+ v. The reason is that the only
one who might have incentive to deviate from the current strategies is an expert with C = c
who tries to bluff in some way to hide the common value.

If they see a bid of cq + v, then they know that their opponent is a high expert with
C = c, or a low expert with C = c, or a high nonexpert. Their payoff by doing nothing in
the second stage is

A2 = prq

prq + p(1− r)q + (1− p)r ((1− δ)0 + δ(c+ v − (cq + v)))
opponent is high expert and C=c

+ p(1− r)q
prq + p(1− r)q + (1− p)r ((1− δ)0 + δ(c+ v − (cq + v)))

opponent is low expert and C=c

+ (1− p)r
prq + p(1− r)q + (1− p)r (a0 + (1− a)(1− δ)0 + (1− a)δ0)

opponent is high nonexpert

,

while their payoff by bidding c is

B2 = (1− δ)
bid goes through

·

 prq

prq + p(1− r)q + (1− p)r ((1− δ)0 + δ(c+ v − (cq + v)))
opponent is high expert and C=c
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+ p(1− r)q
prq + p(1− r)q + (1− p)r ((1− δ)v + δ(c+ v − (cq + v)))

opponent is low expert and C=c

+ (1− p)r
prq + p(1− r)q + (1− p)r (a0 + (1− a)(1− δ)cq + v − c

2 + (1− a)δ0)
opponent is high nonexpert


+ δ

bid doesn’t go through
· A2.

By bidding c + ε for some small ε > 0, his payoff can only decrease. By bidding c − ε, the
payoff is the same as if they stay with the bid of cq + v (according to the tie-breaking rule,
if two bidders are both high, the nonexpert wins). It holds that

B2 −A2 = (1− δ)
[

p(1− r)q
prq + p(1− r)q + (1− p)r

(1− δ)v +
(1− p)r

prq + p(1− r)q + (1− p)r
(1− a)(1− δ)

cq + v − c
2

]
,

and we want this to be equal to 0 to permit mixing these strategies, which will give us an
expression for the mixing probability a. This is

a = 1− 2p(1− r)qv
(1− p)r(c− (cq + v)) .

This is always ≤ 1. We assumed also that a > 0, which is equivalent to v < c(1−p)r(1−q)
2p(1−r)q+(1−p)r =

m1. Therefore, we need this condition to have an equilibrium in this case.
If 1 − 2p(1−r)qv

(1−p)r(c−(cq+v)) ≤ 0, which is equivalent to v ≥ m1 and corresponds to a = 0, we
need a different set of strategies and we consider this case later.

— Low nonexpert: His expected valuation is cq. His payoff if he bids cq in the first stage
is

A3 = pr(q0 + (1− q)(−v))
opponent is high expert

+ p(1− r)(q0 + (1− q)0)
opponent is low expert

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)(b0 + (1− b)(g(cq − v) + (1− g)(1− δ)0 + (1− g)δ(cq − v))
opponent is low nonexpert

)

His payoff if he bids v in the first stage and follows the current strategy in the second stage
is
B3 = pr(q0 + (1− q)(g0 + (1− g)(1− δ)(−v) + (1− g)δ0))

opponent is high expert

+ p(1− r)(q0 + (1− q)0)
opponent is low expert

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)
[
b0 + (1− b)(g2(cq − v2 ) + (1− g)g((1− δ)(cq − v) + δ

cq − v
2 )

opponent is low nonexpert

+g(1− g)((1− δ)0 + δ
cq − v

2 ) + (1− g)2((1− δ)20 + (1− δ)δ(cq − v) + δ(1− δ)0 + δ2 cq − v
2 ))

]
.
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Now, in the second stage, if a low nonexpert with a bid of v sees any bid other than v from
the opponent, bidding cq or nothing in the second stage doesn’t affect his payoff. If he sees
a bid of v, then he knows that the opponent is either a high expert with C = 0 or a low
nonexpert. If he does nothing in the second stage, his payoff is

A4 = pr(1− q)
pr(1− q) + (1− p)(1− r)(1− b)(0)

opponent is high expert and C=0

+ (1− p)(1− r)(1− b)
pr(1− q) + (1− p)(1− r)(1− b)(g cq − v2 + (1− g)(1− δ)0 + (1− g)δ cq − v2 )

opponent is low nonexpert

,

while if he bids cq, the payoff is

B4 = (1− δ)
bid goes through

 pr(1− q)
pr(1− q) + (1− p)(1− r)(1− b)(−v)

opponent is high expert and C=0

+ (1− p)(1− r)(1− b)
pr(1− q) + (1− p)(1− r)(1− b)(g(cq − v) + (1− g)(1− δ)0 + (1− g)δ(cq − v))

opponent is low nonexpert


+ δA4

bid doesn’t go through
.

It must hold that A4 = B4 to permit mixing these strategies, from which we get an expression
for the mixing probability g which is

g =
2pr(1−q)v

(1−p)(1−r)(1−b)(cq−v) − δ
1− δ .

This expression is non-negative for sufficiently small δ and it is < 1 iff

v <
c(1− p)(1− r)(1− b)q

2pr(1− q) + (1− p)(1− r)(1− b) .

For b = 0 and the corresponding g, we get A3 ≤ B3 (for g < 1), therefore the current
strategy of the low expert is optimal and we get an equilibrium. For this reason, we set
b = 0. The above condition then becomes

v <
c(1− p)(1− r)q

2pr(1− q) + (1− p)(1− r) = m2.

If v ≥ m2, then we set g = 1 (which corresponds to strategy uLNE).
This ends the proof for equilibria 1 and 3.
When a = 0, the strategy for the low expert we considered above is not always optimal.

This happens when v ≥ m1. More specifically, since he knows that the high nonexpert will
bid c in the second stage for sure, he has no reason to wait until the second stage to bid, and
bids c from the first stage. With the same logic, since a high nonexpert knows for sure that
he will bid c in the second stage, it is even better to bid c from the first stage. Moreover,
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when a high nonexpert sees a bid of c in the first stage, he doesn’t know for sure what
the opponent is, so he doesn’t increase his bid. This will change also the strategy for the
high expert with C = c. In the first stage, he prefers to bid c instead of cq + v, because a
bid of cq + v would reveal that he is a high expert and C = c. So, the equilibrium when
v ≥ c(1−p)r(1−q)

2p(1−r)q+(1−p)r = m1 is as follows.

• High Expert: If C = 0, bids v in the first stage and does nothing in the second stage.
If C = c, bids c in the first stage and bids c+ v in the second stage.

• Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and nothing
in the second stage.

• High nonexpert: Bids c in the first stage. If he sees a bid other than 0, v, cq or c in the
first stage, he bids c+ v in the second stage. Otherwise, he does nothing in the second
stage.

• Low nonexpert: Bids v in the first stage. He bids cq in the second stage with probability
1− g.

The proofs for the high expert, the low expert and the low nonexpert are the same.
We need to check if the high nonexpert has any reason to change strategy. An alternative
strategy for him would be the one he had before, i.e. to bid cq+ v in the first stage and c in
the second with some probability. So, suppose that he had bidden cq + v in the first stage
and he sees a bid of c. His payoff by doing nothing in the second is 0, while the payoff to
bid c in the second stage is

B′ = (1− δ)
bid goes through

·

 prq

prq + p(1− r)q + (1− p)r ((1− δ)0 + δ(c+ v − (c)))
opponent is high expert and C=c

+ p(1− r)q
prq + p(1− r)q + (1− p)r (c+ v − c)

opponent is low expert and C=c

+ (1− p)r
prq + p(1− r)q + (1− p)r (cq + v − c

2 )
opponent is high nonexpert


+ δ

bid doesn’t go through
· 0.

This is ≥ 0 for v ≥ c(1−p)r(1−q)
2prqδ+2p(1−r)q+(1−p)r , which is true since

v >
c(1− p)r(1− q)

2p(1− r)q + (1− p)r ≥
c(1− p)r(1− q)

2prqδ + 2p(1− r)q + (1− p)r .

Therefore, he is better off by bidding c rather than 0 in the second stage. This means that by
bidding in the first stage he can increase his payoff. All other possible strategies are trivially
dominated by those we considered above.

This ends the proof for equilibria 2 and 4.
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Summarizing the first case, when a > 0 (i.e. v < m1) and g < 1 (i.e. v < m2), we get
the equilibrium (sHE1 , sLE, xHNE, xLNE), when a = 0 (i.e. v ≥ m1) and g < 1 (i.e. v < m2),
we get the equilibrium (sHE2 , tLE, oHNE, xLNE), when a > 0 (i.e. v < m1) and g = 1 (i.e.
v ≥ m2), we get the equilibrium (sHE1 , sLE, xHNE, uLNE), and when a = 0 (i.e. v ≥ m1) and
g = 1 (i.e. v ≥ m2), we get the equilibrium (sHE2 , tLE, oHNE, uLNE).

Case 2. Assume now that M2 ≤ v < M1. This means that cq ≤ v and cq + v < c.
Consider the following set of strategies:

• High Expert: If C = 0, bids v in the first stage and does nothing in the second stage.
If C = c, bids cq + v in the first stage and bids c+ v in the second stage.

• Low Expert: If C = 0, does nothing. If C = c, he bids cq + v in the first stage and c
in the second stage.

• High nonexpert: Bids cq + v in the first stage. If he sees a bid other than 0, v, cq, or
cq + v in the first stage, he bids c+ v in the second stage. Otherwise, he bids c in the
second stage with probability 1− a.

• Low nonexpert: Bids cq in the first stage and nothing in the second.

We now investigate if anyone has incentive to change strategy. For a > 0, the arguments
for all types of bidders are the same as in the previous case except for the low nonexpert.

The expected valuation of a low nonexpert is cq. Now he bids cq in the first stage and his
expected payoff is 0. The only way to get the item is only if he faces another low nonexpert,
in which case they both bid cq and there is a tie. But even in this case he has to pay cq, so
his payoff is 0. He cannot achieve a better payoff, since it is never optimal to bid something
above his expected valuation.

This ends the proof for equilibrium 5.
Similarly as in the previous case, the equilibrium when v ≥ c(1−p)r(1−q)

2p(1−r)q+(1−p)r = m1 (which
means a = 0) is as follows.

• High Expert: If C = 0, bids v in the first stage and does nothing in the second stage.
If C = c, bids c in the first stage and bids c+ v in the second stage.

• Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and nothing
in the second stage.

• High nonexpert: Bids c in the first stage. If he sees a bid other than 0, v, cq, or c in
the first stage, he bids c + v in the second stage. Otherwise, he does nothing in the
second stage.

• Low nonexpert: Bids cq in the first stage and nothing in the second.

This ends the proof for equilibrium 6.
Summarising the second case, when a > 0 (i.e. v < m1), we get the equilibrium

(sHE1 , sLE, xHNE, tLNE), and when a = 0 (i.e. v ≥ m1), we get the equilibrium (sHE2 , tLE,
oHNE, tLNE).

Case 3. Next, suppose that max{M2,M1} ≤ v. This means that max{cq, c(1− q)} ≤ v.
We consider the following set of strategies:
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• High Expert: If C = 0, bids v in the first stage and does nothing in the second stage.
If C = c, bids cq + v in the first stage and bids c+ v in the second stage.

• Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and nothing
in the second stage.

• High nonexpert: Bids cq + v in the first stage. If he sees a bid other than 0, v, cq, c,,
or cq + v in the first stage, he bids c+ v in the second stage.

• Low nonexpert: Bids cq in the first stage and nothing in the second.

This is the simplest case. Both high and low nonexperts have nothing to lose by bidding
their expected valuation, therefore they do so from the first stage. The low nonexpert has
no reason to hide his identity, therefore he bids his valuation from the first stage. The same
is true for a high expert with C = 0. Finally, the high expert with C = c bids the highest
possible he can in the first stage without revealing that he is a high expert, which is a bid of
cq + v, and then he bids c+ v in the second stage. If he bids c+ v from the first stage, then
his payoff strictly decreases because of the possibility that the opponent is a high nonexpert.

This ends the proof for equilibrium 9.
Summarizing the third case, we get the equilibrium (sHE1 , tLE, tHNE, tLNE).
Case 4. Finally, suppose that M1 ≤ v < M2. This means that c(1 − q) ≤ v < cq. We

consider two cases:

• If v < c(1−p)(1−r)q
2pr(1−q)+(1−p)(1−r) = m2, the following is an equilibrium.

– High Expert: If C = 0, bids v in the first stage and does nothing in the second
stage. If C = c, bids cq + v in the first stage and bids c+ v in the second stage.

– Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and
nothing in the second stage.

– High nonexpert: Bids cq+v in the first stage. If he sees a bid other than 0, v, cq, c,,
or cq + v in the first stage, he bids c+ v in the second stage.

– Low nonexpert: Bids v in the first stage. He bids cq in the second stage with
probability 1− g, where g =

2pr(1−q)v
(1−p)(1−r)(cq−v)−δ

1−δ .

• If v ≥ c(1−p)(1−r)q
2pr(1−q)+(1−p)(1−r) = m2, the following is an equilibrium.

– High Expert: If C = 0, bids v in the first stage and does nothing in the second
stage. If C = c, bids cq + v in the first stage and bids c+ v in the second stage.

– Low Expert: If C = 0, does nothing. If C = c, he bids c in the first stage and
nothing in the second stage.

– High nonexpert: Bids cq+v in the first stage. If he sees a bid other than 0, v, cq, c,,
or cq + v in the first stage, he bids c+ v in the second stage.

– Low nonexpert: Bids v in the first stage and nothing in the second.
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For the experts and the high nonexpert, the proofs are similar to the previous case. For
the low nonexpert, the proof is similar to the second case.

This ends the proof for equilibria 7 and 8.
Summarizing the fourth case, when g < 1 (i.e. v < m2), we get the equilibrium (sHE1 , tLE,

tHNE, xLNE), and when g = 1 (i.e. v ≥ m2), we get the equilibrium (sHE1 , tLE, tHNE, uLNE).

B.2 More on δ

Recall that δ is the probability that a bid in the second stage does not go through (due to
network or other technical difficulties). For the result of Lemma 2 to hold, in the model
section, we assumed that δ ≤ δ̄. In this section, we elaborate on how to calculate the value
of δ̄. We also briefly discuss how the equilibrium structure changes when δ > δ̄.

We start with the first case of Lemma 2, i.e. when v ≤ min{m1,m2}. In that case, the
set of strategies (sHE1 , sLE1 , xHNE, xLNE) is an equilibrium for sufficiently small δ.

More specifically, there are three threshold values τ1, τ2, τ3, and the case 1 of Lemma 2
holds if δ ≤ min{τ1, τ2, τ3}. The first threshold, τ1, corresponds to the strategy of the high
expert. When δ exceeds this threshold, a high expert with C = c prefers to bid c + v in
the first stage instead of waiting to bid in the second stage (i.e. instead of following strategy
sHE1 ).

The second threshold, τ2, corresponds to the strategy of the low expert. When δ exceeds
this threshold, a low expert with C = c prefers to bid c in the first stage instead of following
the strategy sLE1 . To compute τ2, we have to find the minimum δ for which B(δ) ≥ A(δ) in
the proof of Lemma 2, or equivalently solve the equation B(δ) = A(δ) for δ.

The third threshold, τ3, corresponds to the strategy of the low nonexpert. When δ exceeds
this threshold, a low nonexpert prefers to bid cq in the first round, i.e. prefers to follow the
strategy tLNE instead of the strategy xLNE. To compute τ3, we have to find the minimum
δ for which the probability g in the proof of Lemma 2 is non-negative, or equivalently solve
the equation g(δ) = 0 for δ.

The closed-form expressions for the three thresholds are given below.

τ1 =
−
√

2c2(p− 2)(p− 1)(q − 1)2r2 + 4c(p− 2)p(q − 1)q(r − 1)rv + p2(r − 1)2v2 + 2c(p− 1)(q − 1)r + p(4q − 1)(r − 1)v
cp(q − 1)r + 2p(2q − 1)(r − 1)v ,

τ2 = max

 1
(p(r−1)−2r)(c(q−1)+v)

√
2
√

(p(r−1)−2r)(c(q−1)+v)(c(p−1)(q−1)r+v(p(2q(r−1)+r)−r))
+ 1

,

1
− (p(r−1)−2r)(c(q−1)+v)
√

2
√

(p(r−1)−2r)(c(q−1)+v)(c(p−1)(q−1)r+v(p(2q(r−1)+r)−r))
+ 1

 =

= 1
(p(r−1)−2r)(c(q−1)+v)

√
2
√

(p(r−1)−2r)(c(q−1)+v)(c(p−1)(q−1)r+v(p(2q(r−1)+r)−r))
+ 1

,

τ3 = 2pr(1− q)v
(1− p)(1− r)(cq + v) .
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The plot in Figure 9 shows how platform’s revenue changes as δ increases in the interval
[0,min{τ1, τ2, τ3}].

Figure 9: Platform’s revenue as δ increases, for v = 0.03, c = 1, p = 0.5, r = 0.5, and
q = 0.1. It is τ1 = 0.445287, τ2 = 0.386605, and τ3 = 0.415385.

We can see that as δ increases, platform’s revenue decreases. The reason for this is that
the equilibrium remains the same, i.e. the bids of the buyers are the same, but the probability
that some bids don’t go through increases, therefore the expected final price of the item is
lower.

We continue with the second case of Lemma 2, where the equilibrium is (sHE2 , tLE, oHNE, xLNE).
Here we need only two bounds for δ, one for the high expert and one for the low nonexpert,
since the low expert bids only in the first round independently of the value of δ.

The threshold for the low nonexpert remains the same as in the previous case, i.e. it is
τ3. However, the bound for the high expert will change due to the change in the strategies
of the other bidders.

Consider the following strategy for the high expert:

• tHE: If C = 0, he bids v in the first stage and does nothing in the second stage.
If C = c, he bids c + v in the first stage and nothing in the second stage (truthful
strategy).

To find the new threshold for the high expert, we need to compare his payoff when he
uses the strategy sHE2 , his payoff when he uses the strategy tHE, and see when the first is
larger than the second, which will make (sHE2 , tLE, oHNE, xLNE) an equilibrium. The new
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threshold is

σ1 = max

2p+
√

2
√

(p− 2)(p− 1)− 2
p

,
2p−

√
2
√

(p− 2)(p− 1)− 2
p

 =

=
2p+

√
2
√

(p− 2)(p− 1)− 2
p

.

Therefore, the necessary and sufficient condition for the second case of Lemma 2 is
δ ≤ min{σ1, τ3}. Similarly for every case of the lemma, we can find the bound for δ. The
following result summarizes all the cases.

Lemma 4. The necessary and sufficient condition for δ in Lemma 2 is δ ≤ δ̄, where

δ̄ =


min{τ1, τ2, τ3}, if v ∈ [0,min{m1,m2}) (case 1),
min{σ1, τ3}, if v ∈ [m1,m2) (cases 2, 7),
min{τ1, τ2}, if v ∈ [m2,m1) (cases 3,5),
σ1, if v ∈ [max{m1,m2},+∞) (cases 4,6,8,9).

B.2.1 An example of equilibrium for δ > δ̄.

Since, according to the industry numbers, the probability that the sniping bid does not go
through is less than 1%, in the main model we only consider the case in which δ is relatively
small. However, it is theoretically interesting to know what happens for larger values of δ.
Depending on the value of δ and other parameters in the model, the full analysis leads to too
many cases the discussion of which is beyond the scope of this paper. However, to gain some
intuition, in the following we discuss one example of the equilibrium structure for δ > δ̄.
Interestingly, we see that the platform’s revenue could be non-monotone in δ.

Consider the following parameter values, c = 1, q = 0.1, r = 0.5, p = 0.5, v = 0.7, and
δ = 0.44. We have v > M2 = 0.1 and v < m1 = 0.75; therefore, we are in case 5 of Lemma 2.
However, it holds that τ1 = 0.348355 and τ2 = 0.257284, i.e., δ exceeds the necessary and
sufficient threshold given in Lemma 4 for (sHE1 , sLE, xHNE, tLNE) to be an equilibrium.

In particular, the low expert does not want to snipe since δ is larger than τ2, so he
moves his bid to the first stage. In other words, he prefers to follow the strategy tLE instead
of the strategy sLE. This will cause a change in the strategies of the other bidders. The
new equilibrium will be (sHE2 , tLE, oHNE, tLNE), which happens to be the same as case 6 of
Lemma 2.

This is because if we cosnider the proof of case 6, the requirements for the equilibrium
are satisfied, even though v < m1. First, it holds that δ < σ1 = 0.44949, so the high expert’s
best response is sHE2 . Moreover, it is the case that v > c(1−p)r(1−q)

2prqδ+2p(1−r)q+(1−p)r = 0.698758, which
makes oHNE the best response for the high nonexpert. The value of v for the low expert and
the low nonexpert doesn’t matter as long as the others follow the aforementioned strategies.
Therefore, (sHE2 , tLE, oHNE, tLNE) is an equilibrium.

This causes the following interesting phenomenon. Even though in the interval [0, 0.257284],
platform’s revenue is a decreasing function of δ, as depicted in Figure 9; as δ increases more,
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outside this interval, platform’s revenue increases. In this example, for δ = 0.257284, plat-
form’s revenue is 0.251106, while for δ = 0.44, it is 0.264497.

This is mainly because the low expert has changed his strategy by moving his bid of c
from the second stage to the first stage, i.e., from the point where his bid was not going
through with probability δ = 0.257284 to the point where his bid always goes through (when
δ = 0.44); this change has a positive effect on the expected price of the item.

As δ increases even more (above σ1), we see similar patterns: intervals in which platform’s
revenue is a decreasing function of δ, and some ‘jumps’ of the revenue in between due to
the change of strategies by bidders. In the limit, when δ ≈ 1, no-one will bid in the second
stage and the auction will be like a sealed-bid second price auction where everyone bids in
the first stage.

B.3 Choice of Tie-breaking Rule
In this section, first we elaborate on the choice of our tie-breaking rule. We argue that this
rule always favors the bidder who is willing to bid slightly higher than the current bid (i.e.
his payoff continues to remain positive if he slightly raises his bid) which the other bidder is
not able to match. Then, we show that our results are robust to the choice of the tie-breaking
rule. In particular, we show that the equilibrium strategies remain almost unchanged, and
our main results continue to hold, under a very different tie-breaking rule.

Recall that we use the following tie-breaking rule: If there is a tie between a low-type
bidder and a high-type bidder, then the item goes to the high-type. If the two bidders are of
the same type but of different expertise levels, then the item goes to the nonexpert. Finally,
if the two bidders are of the same type and of the same expertise level, then the winner is
determined by a fair coin toss.

There are two interesting cases for which the tie-breaking rule has an effect in the equi-
libria described in the main lemma. The first is when a high nonexpert faces a low expert
who knows that C = c, and they both bid c. In this case, the high nonexpert is willing to
bid above c to win the tie and take the item, because his valuation is higher than c, but
the low expert cannot do the same since his valuation is c. Therefore, the tie-breaking rule
favors the bidder who would be willing to pay a slightly higher price.

The second case is when a high expert who knows that C = 0 faces a low nonexpert, and
they both bid v. In this case, the low nonexpert does not want to win the item, because his
valuation is below v. Therefore, he has an incentive to bid a bit below v, whereas the high
expert does not want to do the same since his valuation is v. Thus, again the tie-breaking
rule favors the bidder who has higher willingness to pay.

Intuitively, if we break the tie in favor of the other bidder in any of the above cases, one of
the bidders would want to increase or decrease his bid by the smallest possible amount ε > 0.
Since in our model the strategy space is continuous and not discrete, such ε does not exist.
We use this tie-breaking rule to avoid such complications. However, to further demonstrate
the robustness of our results, in the following, we show that equilibrium strategies, and
therefore all of our main results, continue to hold if we change the rule in the opposite
direction and favor the experts over the nonexperts.
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B.3.1 Changing the tie-breaking rule.

Consider the following alternate tie-breaking rule: If there is a tie between two bidders
of different expertise levels, then the item goes to the expert. Otherwise, the winner is
determined by a fair coin toss. To reduce the number of cases in the analysis, we assume
that δ = 0, and only focus on the bids of the second stage.

As explained above, this game does not have a pure strategy Nash equilibrium unless we
discretize the bidding space. We show that as the size of the discretization step converges to
zero (i.e., the bidding space converges to continuous), the equilibrium outcome of the new
tie-breaking rule converges to that of the old tie-breaking rule.

To discretize the strategy space, we assume that bidders can bid c or c + ε, for some
very small ε > 0, but they cannot bid anything in between. This assumption will come
into play when there is a tie between a low expert and a high nonexpert who both bid c
(the first case discussed earlier in this section). Note that without this discretization, high
nonexperts sometimes want to bid the smallest number strictly larger than c; this is because
high nonexperts want to win against experts but lose against other high nonexperts. We
assume that the rest of the strategy space remains unchanged.

We start by defining the strategies for the different types of bidders.

• For a high expert, consider the following strategy:

– tHE: If C = 0, he bids v. If C = c, he bids c+ v.

• For a low expert, consider the following strategy:

– tLE: If C = 0, he does nothing. If C = c, he bids c.

• For a high nonexpert, consider the following strategies:

– xHNE: He bids cq + v with probability a and c+ ε with probability 1− a, where
a := a(ε) = 1− 2p(1−r)qv

(1−p)r(c+ε−(cq+v)) .

– oHNE: He bids c+ ε.
– tHNE: He bids cq + v.

• For a low nonexpert, consider the following strategies:

– xLNE: He bids v with probability g and cq with probability 1 − g, where g =
2pr(1−q)v

(1−p)(1−r)(cq−v) .

– uLNE: He bids v.
– tLNE: He bids cq.

We define also a new threshold for v, the analogous of the old m1, that now depends also
on ε. We have that m1 := m1(ε) = (c+ε−cq)(1−p)r

2p(1−r)q+(1−p)r .
Intuitively, high nonexperts who want to over-bid now bid c+ ε instead of c. This allows

them to win against experts, even though ties are broken in favor of experts. We now describe
the equilibrium bidding strategies for buyers in nine cases in the following lemma.
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Lemma 5. For the auction model described above with the alternative tie-breaking rule, the
buyers’ equilibrium bidding strategies are given below.

1. If v ∈ [0,min{m1(ε),m2}), the set of strategies (tHE, tLE, xHNE, xLNE) forms an equi-
librium.

2. If v ∈ [m1,min{m2,M1}), the set of strategies (tHE, tLE, oHNE, xLNE) forms an equi-
librium.

3. If v ∈ [m2,min{m1(ε),M2}), the set of strategies (tHE, tLE, xHNE, uLNE) forms an
equilibrium.

4. If v ∈ [max{m1(ε),m2},min{M1,M2}), the set of strategies (tHE, tLE, oHNE, uLNE)
forms an equilibrium.

5. If v ∈ [M2,m1(ε)), the set of strategies (tHE, tLE, xHNE, tLNE) forms an equilibrium.

6. If v ∈ [max{m1(ε),M2},M1), the set of strategies (tHE, tLE, oHNE, tLNE) forms an
equilibrium.

7. If v ∈ [M1,m2), the set of strategies (tHE, tLE, tHNE, xLNE) forms an equilibrium.

8. If v ∈ [max{m2,M1},M2), the set of strategies (tHE, tLE, tHNE, uLNE) forms an equi-
librium.

9. If v ∈ [max{M1,M2},+∞), the set of strategies (tHE, tLE, tHNE, tLNE) forms an equi-
librium.

Proof. We will prove the first four equilibria, i.e. when v < M1 and v < M2, which are the
most general. The rest of the cases are similar to the proof of the Lemma 2.

We have that v < min{M1,M2}. This means that cq + v < c and v < cq. Consider the
following general set of strategies:

• High Expert: If C = 0, he bids v. If C = c, he bids c+ v.

• Low Expert: If C = 0, he does nothing. If C = c, he bids c.

• High nonexpert: He bids cq + v with probability a and c+ ε with probability 1− a.

• Low nonexpert: He bids v with probability g and cq with probability 1− g.

The probabilities a, g are as yet undetermined. We will examine if anyone has incentive
to change strategy and at the same time try to determine the probabilities and the conditions
for which the above is an equilibrium. These conditions will give us the proof that equilibria
1 and 3 are correct.

Both the high and the low experts bid truthfully and this is optimal for them. This
is because they bid in the second stage, therefore they don’t have any fear to reveal the
common value to nonexperts. They also know their true valuation, and since we have a
second-price auction, it is optimal for them to bid their true values.
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Now, we consider a high nonexpert. His expected valuation is cq + v. Their payoff by
bidding cq + v is

A2 = prq(0)
opponent is high expert and C=c

+ pr(1− q)(0)
opponent is high expert and C=0

+ p(1− r)q(0)
opponent is low expert and C=c

+ p(1− r)(1− q)(v)
opponent is low expert and C=0

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)(g(cq) + (1− g)(v))
opponent is low nonexpert

,

while their payoff by bidding c+ ε is

B2 = prq(0)
opponent is high expert and C=c

+ pr(1− q)(0)
opponent is high expert and C=0

+ p(1− r)q(v)
opponent is low expert and C=c

+ p(1− r)(1− q)(v)
opponent is low expert and C=0

+ (1− p)r
(

(1− a)cq + v − (c+ ε)
2

)
opponent is high nonexpert

+ (1− p)(1− r)(g(cq) + (1− g)(v))
opponent is low nonexpert

.

By bidding c + ε + ζ for some small ζ > 0, his payoff can only decrease. By bidding c,
the payoff is the same as with the bid of cq + v. It holds that

B2 − A2 = p(1− r)q(v) + (1− p)r
(

(1− a)cq + v − (c+ ε)
2

)
,

and we want this to be equal to 0 to permit mixing these strategies, which will give us an
expression for the mixing probability a. This is

a = 1− 2p(1− r)qv
(1− p)r(c+ ε− (cq + v)) .

This is always ≤ 1. The inequality a > 0 is equivalent to v < (c+ε−cq)(1−p)r
2p(1−r)q+(1−p)r = m1. So, we

need this condition for equilibria 1 and 3. If 1− 2p(1−r)qv
(1−p)r(c+ε−(cq+v)) ≤ 0, then it is always better

for the high nonexpert to bid c+ ε, so we set a = 0 (equilibria 2 and 4).
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Next, we consider a low nonexpert. His expected valuation is cq. His payoff if he bids cq
is

A3 = pr(q0 + (1− q)(−v))
opponent is high expert

+ p(1− r)(q0 + (1− q)0)
opponent is low expert

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)(g(cq − v) + (1− g)0)
opponent is low nonexpert

.

His payoff if he bids v is

B3 = pr(q0 + (1− q)0)
opponent is high expert

+ p(1− r)(q0 + (1− q)0)
opponent is low expert

+ (1− p)r(0)
opponent is high nonexpert

+ (1− p)(1− r)
(
g
cq − v

2

)
opponent is low nonexpert

.

It must hold that A3 = B3 to permit mixing these strategies, from which we get an expression
for the mixing probability g which is

g = 2pr(1− q)v
(1− p)(1− r)(cq − v) .

This expression is always non-negative, and it is < 1 iff

v <
c(1− p)(1− r)q

2pr(1− q) + (1− p)(1− r) = m2.

If v ≥ m2, then we set g = 1 (which corresponds to strategy uLNE).
This ends the proof.

Notice that as ε goes to 0, the bidding strategies of Lemma 5 approach the strategies of
the main Lemma 2. This means that the analogues of Proposition 1 and Proposition 2 will
continue to hold with the alternative tie-breaking rule.

B.4 Distribution of Bidders’ Private Value
In the main model, we assumed that V has binary distribution with support {0, v}. In this
section we relax that assumption and show that our main result, that nonexperts sometimes
bid more than their expected value, still holds. More specifically, for k ≥ 2, we assume that
the private value of each bidder is V = i·v

k−1 with probability ri, where i ∈ {0, 1, . . . , k − 1}
and ∑k−1

i=0 ri = 1. In the main model, we had k = 2, r2 = r, and r1 = 1− r.
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The tie-breaking rule is a generalization of what we had in the main model. We assume
that in case of a tie the bidder with the highest private value wins. If the two bidders have
the same private value, then the nonexpert wins. If both bidders have the same private value
and the same expertise level, then the winner is determined with a fair coin toss.

To simplify the analysis, we assume that δ = 0 and only focus on the bids in the second
stage. It is easy to see that it is weakly dominant for all the experts to bid their true
valuation. In other words, if an expert has private value i·v

k−1 , he will bid i·v
k−1 when the

common value is low (C = 0), and c+ i·v
k−1 , when the common value is high (C = c). We also

assume that v ≤ c ·min{q, 1− q} (which corresponds to the condition v ≤ min{M1,M2} of
our main model).

We show that, in equilibrium, nonexperts will mix between at most three different bids.
More specifically, if a nonexpert is of type i, meaning that his private value is i·v

k−1 , he will
mix between (i+1)·v

k−1 , c · q+ i·v
k−1 , and c+ (i−1)·v

k−1 . The bid (i−1)·v
k−1 is employed because he wants

to lose against the experts of higher type when C = 0. The bid c · q + i·v
k−1 is used because

this is his expected valuation and this is the bid he wants to have against a nonexpert. The
bid c+ (i−1)·v

k−1 is used because he wants to win against an expert of lower type when C = c.
The reason that bidders use only these three bids in equilibrium is that, assuming that

the opponent also uses the same strategy in equilibrium, every other bid is dominated by at
least one of these three. The intuition is as follows. A bid y ∈ [0, cq) will lose against all
the bids in [cq,+∞) and will win only against some bids in [0, v]. But a bid in [0, v] means
that either the opponent is an expert and C = 0, in which case we want to win against
bids in [0, vi] and lose against bids in [vi+1, v], or the opponent is a nonexpert who happened
to underbid, in which case we want to win all the time, something achieved by the bid of
cq + vi. So, depending on the parameters of the model, y is dominated by either vi+1 or
cq + vi. When these two give the same payoff, i.e. when the nonexpert is mixing between
the two, y is dominated by both.

Similarly, a bid y ∈ [cq, c) will lose against all the bids in [c,+∞), will win against all
bids in [0, v], and will win against some bids in [cq, cq+v]. But a bid in [cq, cq+v] means that
the opponent is a nonexpert, in which case we want to win against all bids in [cq, cq + vi−1]
and lose against bids in [cq + vi+1, cq + v]. So, y is dominated by the bid cq + vi.

Finally, a bid y ∈ [c,+∞) will win against all bids in [0, cq + v], and will win against
some bids in [c,+∞). But a bid in [c,+∞) means that either the opponent is an expert and
C = c, in which case we want to win against bids in [c, c + vi−1] and lose against bids in
[c+vi, v], or the opponent is a nonexpert who happened to overbid, in which case we want to
lose all the time, something achieved by the bid of cq+ vi. So, depending on the parameters
of the model, y is dominated by either c + vi−1 or cq + vi. When these two give the same
payoff, i.e. when the nonexpert is mixing between the two, y is dominated by both.

Suppose that the nonexperts of type i will bid (i+1)·v
k−1 with probability θi,1, c · q+ i·v

k−1 with
probability θi,2, and c+ (i−1)·v

k−1 with probability θi,3, where θi,1 + θi,2 + θi,3 = 1. It holds that
θ0,3 = 0 and θk−1,1 = 0.

The expected payoff of a nonexpert of type i < k − 1 when he bids (i+1)·v
k−1 is

Φi =(1− p)
i−1∑
j=0

rjθj,1

(
cq + iv

k − 1 −
(j + 1)v
k − 1

)
+ 1

2riθi,1
(
cq + iv

k − 1 −
(i+ 1)v
k − 1

)
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+ p(1− q)
i∑

j=0

v(i− j)rj
k − 1 .

The expected payoff of a nonexpert of type i when he bids c · q + i·v
k−1 is

Ψi =(1− p)
k−1∑
j=0

rjθj,1

(
cq + iv

k − 1 −
(j + 1)v
k − 1

)
+

i−1∑
j=0

rjθj,2

(
iv

k − 1 −
jv

k − 1

)
+ p(1− q)

k−1∑
j=0

v(i− j)rj
k − 1 .

The expected payoff of a nonexpert of type i > 0 when he bids c+ (i−1)·v
k−1 is

Ωi =(1− p)
k−1∑
j=0

rjθj,1

(
cq + iv

k − 1 −
(j + 1)v
k − 1

)
+

i−1∑
j=0

rjθj,3

(
cq − c+ iv

k − 1 −
(j − 1)v
k − 1

)

+
k−1∑
j=0

rjθj,2

(
iv

k − 1 −
jv

k − 1

)
+ 1

2riθi,3
(
cq − c+ iv

k − 1 −
(i− 1)v
k − 1

)
+ p

(1− q)
k−1∑
j=0

v(i− j)rj
k − 1 + q

i−1∑
j=0

rj

(
iv

k − 1 −
jv

k − 1

) .
Consider the case where θi,1 > 0 for every i < k − 1, θi,2 > 0 for every i, and θi,3 > 0 for

every i > 0. In other words, all types of nonexperts are mixing between all their potential
bids. This case corresponds to the equilibrium in case 1 of Lemma 2. To find all the
probabilities t, we need to solve the system

Φi = Ψi, for i ∈ {0, 1, . . . , k − 2}
Ψi = Ωi, for i ∈ {1, 2, . . . , k − 1}
θ0,3 = 0
θk−1,1 = 0

3∑
m=1

θi,m = 1, for i ∈ {0, 1, . . . , k − 1}.

The solution to this system for k = 2 is

θ0,1 = 2p(q − 1)r1v

(p− 1)r0(cq − v)

θ0,2 = 1− 2p(q − 1)r1v

(p− 1)r0(cq − v)
θ0,3 = 0
θ1,1 = 0

θ1,2 = 1− 2pqr0v

(p− 1)r1(c(q − 1) + v)

θ1,3 = 2pqr0v

(p− 1)r1(c(q − 1) + v) ,
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which is the same as our solution in the main body of the paper (θ1,2 = a and θ0,1 = g).
The solution to the system for k = 3 is

θ0,1 = 2v(2cq(p(q − 1)r1 + 2(p− 1)r0) + v(−p(q − 1)(r1 − 2r2)− 4(p− 1)r0))
(p− 1)r0 (4c2q2 + 4cqv − 7v2)

θ0,2 = (2cq − v)((p− 1)r0(2cq − v)− 2p(q − 1)r1v)− 4p(q − 1)r2v
2

(p− 1)r0 (4c2q2 + 4cqv − 7v2)
θ0,3 = 0

θ1,1 = 2v(2cq(p(q − 1)r2 − (p− 1)r0) + v(p(q − 1)(2r1 + 3r2) + (p− 1)r0))
(p− 1)r1 (4c2q2 + 4cqv − 7v2)

θ1,2 =
(

16c4(p− 1)(q − 1)2q2r1 − 16c3(q − 1)qv
(
r2(pq2 − (p+ 1)q + p)

+ r0(p((q − 1)q + 1) + q − 1) + (p− 1)r1
)

+ 4c2v2
(
2r0(p(q((q − 1)q + 4)− 1) + 3q2 − 4q + 1)

+ r1(p(−6(q − 1)q − 3) + 18(q − 1)q + 7)− 2r2(p(q((q − 2)q + 5)− 3) + q(2− 3q))
)

+ 4cv3
(
r0(p(q(13q − 12)− 2) + 5q + 2) + r1(p(8(q − 1)q − 3) + 7)

+ r2(p(q(13q − 14)− 1)− 5q + 7)
)

+ 7v4
(
2r0(−3pq + p− 1)

+ 2r2(3pq − 2p− 1) + (3p− 7)r1
))

/(
(p− 1)r1

(
4c2(q − 1)2 − 4c(q − 1)v − 7v2

) (
4c2q2 + 4cqv − 7v2

))

θ1,3 = 2(p− 1)r2v(2c(q − 1) + v)− 2pqv((3r0 + 2r1)v − 2c(q − 1)r0)
(p− 1)r1 (4c2(q − 1)2 − 4c(q − 1)v − 7v2)

θ2,1 = 0

θ2,2 = (p− 1)r2(2c(q − 1) + v)2 + 2pqv(2r0v − r1(2c(q − 1) + v))
(p− 1)r2 (4c2(q − 1)2 − 4c(q − 1)v − 7v2)

θ2,3 = 2pqv(r1(2c(q − 1) + v)− 2r0v)− 8(p− 1)r2v(c(q − 1) + v)
(p− 1)r2 (4c2(q − 1)2 − 4c(q − 1)v − 7v2) .

Even though we can analytically solve the system for larger values of k, the closed-form
solution does not have any meaningful pattern. In the following example, we numerically
solve the system for the case of k = 20, which would be an approximation of uniform
continuous distribution of v.

Figure 10 shows a plot of the three mixing probabilities as functions of the private value
of a nonexpert for k = 20 and small v. We can see that as the private value increases, the
probability of underbidding decreases and the probability of overbidding increases.

As v increases, we will get different equilibria where some types of nonexperts don’t
mix between all their potential bids, i.e., some θi,1’s become 0. A complete analysis of the
equilibrium is beyond the scope of this paper as the number of cases in equilibrium analysis
grows exponentially in k as v increases; however, the general pattern is that as v increases,
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Figure 10: Mixing probabilities as a function of the private value. Blue is for underbidding,
orange for bidding the expected valuation, and green for overbidding. The plot is for k = 20,
ri = 1/k for i ∈ {0, . . . , k − 1}, c = 1, q = 0.5, p = 0.999, and v = 0.0006.

nonexperts bid more aggressively. This is consistent with our findings in the main body of
the paper.

B.5 Signaling Using Closing Format: Hard vs. Soft Close
In this section, we consider a situation in which the platform lets the sellers decide whether
to sell in an auction with hard-close or soft-close format. We call the seller of an item with
high common value a high-type seller, and the seller of an item with low common value a
low-type seller. A seller is high-type with probability q where q is common knowledge. A
seller naturally knows his own type; experts also know the seller’s type (since they know the
common value of items being offered). But nonexperts do not know the seller’s type. We
investigate whether a seller can signal his type using the closing format (soft versus hard).
In particular, we derive conditions for existence of a separating equilibrium.

A seller sets his closing format F (soft or hard). For a format F , we assume that all
nonexperts have the same belief about a seller who uses F . In general, nonexperts’ belief
about a format is the probability that they think a seller using that format is high-type.
However, since we only consider pure strategy Nash equilibria of the game, nonexperts’
belief about a format is limited to three possibilities: Low (L), High (H), and Unknown
(X). In belief L, nonexperts believe that a seller using format F is always a low-type seller.
In belief H, nonexperts believe that a seller using format F is always a high-type seller.
Finally, in belief X, nonexperts cannot infer anything about the seller’s type and believe
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that the seller is high-type with probability q.
Nonexperts have beliefs about each format F . In equilibrium, the beliefs must be con-

sistent with sellers’ strategies. In particular, if both types of sellers use the same format in
(a pooling) equilibrium, nonexperts’ belief for that format must be X. If the two types of
sellers use different formats in (a separating) equilibrium, nonexperts’ belief for the format
used by the low-type seller must be L and for the format used by the high-type seller must
be H. Furthermore, in an equilibrium, given the nonexperts’ beliefs, sellers should not be
able to benefit from changing their strategies.

We use the following notation to explain the results of this section: Let πBT (F ), where
T ∈ {L,H} and B ∈ {L,H,X} denote the expected profit of a seller who uses mechanism
F ∈ {soft, hard} and has type T , and nonexperts believe has type B.

Lemma 6. For any B ∈ {L,H} and any T ∈ {L,H} we have πBT (soft) = πBT (hard). In
other words, if nonexperts have no uncertainty about the type of the seller (B 6= X), soft-
close and hard-close formats both lead to the same revenue for the seller (no matter what
type the seller is).

Proof. Note that when nonexperts have no uncertainty about the type of the seller, they do
not infer anything from other bidders’ bids, and do not update their expected value. The
auction reduces to a full-information second price auction in this case.

The seller’s revenue, in each case, is given by

πHH (soft) = πHH (hard) = c+ r2v;

πLL(soft) = πLL(hard) = r2v;

πLH(soft) = πLH(hard) =

cp2 + rv(2(1− p)p(1− r) + r) if v ≤ c,

cp (2(1− p)r + p− 2(1− p)r2) + r2v if v > c;

πHL (soft) = πHL (hard) =

c(1− p)2 + rv(2(1− p)p(1− r) + r) if v ≤ c,

c(1− p)(p(2(1− r)r − 1) + 1) + r2v if v > c.

Lemma 7. No separating equilibrium exists.

Proof. Assume for sake of contradiction that there is a separating equilibrium in which
the low-type uses format F and the high-type uses format F ′. Note that, using the above
expressions, we have πLL(F ) < πHL (F ) = πHL (F ′) for any F and F ′. Therefore, the low-type
benefits from mimicking, contradicting the equilibrium condition.

Depending on out-of-equilibrium beliefs, the game could have multiple pooling equilibria
(both soft- and hard-close). We can show that soft-close is always a pooling equilibrium.
Furthermore, for regions in which hard-close provides higher expected revenue for the high-
type seller, as shown in Figure 6, hard-close is also a pooling equilibrium. The intuitive
criterion is not sufficient for refining the equilibrium set to a unique equilibrium. However,
we can show that only soft-close pooling equilibrium can survive the D1 criterion refinement.
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Intuitively, the high-type always gains more (loses less) than low-type by deviating to soft-
close format in a hard-close pooling equilibrium. Therefore, out-of-equilibrium beliefs on
soft-close auction, subject to D1 requirement, is high. This makes the deviation to soft-close
always profitable (in a hypothetical hard-close equilibrium). Therefore, hard-close pooling
equilibrium cannot survive D1 criterion refinement. This is formally proved in the following
lemma.

Lemma 8. A hard-close pooling equilibrium cannot survive D1 criterion refinement.

Proof. Assume for sake of contradiction that there is a hard-close pooling equilibrium. Let z
be the buyer’s belief, the probability that the seller is high-type, on observing the soft-close
format. We show that for any z < 1, if a low-type seller weakly benefits from deviating to
soft-close, a high-type seller strictly benefits from deviating. Then, according to D1 criterion,
this implies that out-of-equilibrium belief on soft-close has to be high. Therefore, hard-close
cannot be an equilibrium.

Assume for sake of contradiction that there is a z for which a low-type seller weakly
benefits from deviating to soft-close, but a high-type seller does not strictly benefit from
deviating to soft-close. First, note that if both buyers are nonexperts, the equilibrium
outcome is not affected by the type of the seller. In other words, both types of sellers would
have the same revenue in each closing format. Similarly, if both buyers are experts, the
equilibrium outcome is not affected by the closing format. Therefore, to compare the benefit
of deviation (for sellers), we can assume that the buyers have different levels of expertise:
an expert and a nonexpert.

If the expert is low-value, then the revenue is zero in both hard-close and soft-close
formats for the low-type seller. The revenue for the high-type seller is always greater than
or equal in soft-close (always c) than in hard-close (at most c, depending on the value of z
and whether the nonexpert is using an aggressive strategy or not).

Finally, consider the case that the expert is high-value. First, assume that the nonexpert
is also high-value. In this case, the revenue of soft-close for high-type seller is always c and
for low-type seller is always v. The revenue of hard-close for the low-type seller is always v.
Therefore, the low-type cannot prefer hard-close to soft-close in this sub-case. Next, assume
that the nonexpert is low-value. In this case, the revenue of the auction in both soft-close
and hard-close cases is determined by the bid of the nonexpert. A low-value nonexpert has
the exact same strategy in soft-close and hard-close formats. Furthermore, this strategy
does not depend on whether the common value is high or low. Therefore, low-type and high-
type sellers have the same revenue in the hard-close format and in the soft-close format.
As shown, there is no case (for any z) in which a low-type seller benefits from deviating to
soft-close while a high-type seller does not. Furthermore, it is easy to see that there are cases
in which the high-type seller strictly benefits from this deviation. Therefore, according to
D1 criterion, buyers’ out-of-equilibrium belief on soft-close auction has to be high.

Given that, in a hypothetical hard-close equilibrium, buyers’ belief on soft-close is high,
sellers always benefit from deviating to soft-close. Therefore, hard-close cannot be a pooling
equilibrium.

Finally, note that a soft-close pooling equilibrium always survives D1 criterion refinement.
This is because whenever the high-type seller benefits from deviating to hard-close, the low-
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type seller also benefits from deviating to hard-close (the proof is very similar to the proof
of Lemma 8). Therefore, a soft-close pooling equilibrium in which out-of-equilibrium belief
on hard-close is low survives D1 criterion refinement.

Given that the only pure strategy equilibrium that survives D1 criterion refinement is
a soft-close pooling equilibrium, we show that, compared to the case where the platform
decides closing format, a low-type seller and the platform are both (weakly) worse off if the
closing format decision is left to the sellers. A high-type seller may be worse off or better
off, depending on other parameters, as shown in Figure 6.
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